skip to main content

Title: Mario Level Generation From Mechanics Using Scene Stitching
Video game tutorials allow players to gain mastery over game skills and mechanics. To hone players’ skills, it is beneficial from practicing in environments that promote individ- ual player skill sets. However, automatically generating environ- ments which are mechanically similar to one-another is a non- trivial problem. This paper presents a level generation method for Super Mario by stitching together pre-generated “scenes” that contain specific mechanics, using mechanic-sequences from agent playthroughs as input specifications. Given a sequence of mechanics, the proposed system uses an FI-2Pop algorithm and a corpus of scenes to perform automated level authoring. The proposed system outputs levels that can be beaten using a similar mechanical sequence to the target mechanic sequence but with a different playthrough experience. We compare the proposed system to a greedy method that selects scenes that maximize the number of matched mechanics. Unlike the greedy approach, the proposed system is able to maximize the number of matched mechanics while reducing emergent mechanics using the stitching process.
Authors:
; ; ;
Award ID(s):
1717324
Publication Date:
NSF-PAR ID:
10231877
Journal Name:
IEEE Conference on Games
Page Range or eLocation-ID:
49 to 56
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new method of automatic critical mechanic discovery for video games using a combination of game description parsing and playtrace information. This method is applied to several games within the General Video Game Artificial Intelligence (GVG-AI) framework. In a user study, human-identified mechanics are compared against system-identified critical mechanics to verify alignment between humans and the system. The results of the study demonstrate that the new method is able to match humans with higher consistency than baseline. Our system is further validated by comparing MCTS agents augmented with critical mechanics and vanilla MCTS agents on 4 games from GVG-AI. Our new playtrace method shows a significant performance improvement over the baseline for all 4 tested games. The proposed method also shows either matched or improved performance over the old method, demonstrating that playtrace information is responsible for more complete critical mechanic discovery.
  2. This paper introduces a fully automatic method of mechanic illumination for general video game level generation. Using the Constrained MAP-Elites algorithm and the GVG-AI framework, this system generates the simplest tile based levels that contain specific sets of game mechanics and also satisfy playability constraints. We apply this method to illuminate the mechanic space for four different games in GVG-AI: Zelda, Solarfox, Plants, and RealPortals. With this system, we can generate playable levels that contain different combinations of most of the possible mechanics. These levels can later be used to populate game tutorials that teach players how to use the mechanics of the game.
  3. There are several educational games and tools that teach program- ming. However, very few offer a deep understanding of Computer Science concepts such as Abstraction, Modularity, Semantics, and Debugging. We present May’s Journey, an educational game that supports learning of basic programming concepts, where players solve puzzles and interact with the environment by typing in a cus- tom programming language. The game design seamlessly integrates learning goals, core mechanics, and narrative elements. We discuss how we integrate the CS concepts mentioned above using game mechanic metaphors.
  4. Content Agnostic Game Engineering (CAGE) architecture utilizes content agnostic mechanics to create educational games that can teach multiple contents. However, the player engagement goes down when second content is played using the same game mechanics. A content agnostic stealth assessment can aid a CAGE game in sustaining the engagement level of its players. A potentially generalizable method for this was tested using Chem-o-crypt, a CAGE game that can teach chemistry and cryptography contents. The game automatically detects frustration, flow, and boredom using the Affdex SDK from Affectiva. A randomized controlled experiment incorporating real-time game adaptation revealed that using stealth assessment can help sustain engagement in a CAGE game when playing multiple contents.
  5. INTRODUCTION: Quadriceps tendon autografts have experienced a rapid rise in popularity for anterior cruciate ligament (ACL) reconstruction due to advantages in graft sizing and potential improvement in biomechanics. While there is a growing body of literature on use of quadriceps tendon grafts, deeper investigation into the biomechanical properties of stitch techniques in this construct has been limited. The purpose of this study was to evaluate the performance of a novel suture needle against different conventional suture needles by comparing the biomechanical properties of two commonly used stitch methods, a whip stitch, and a locking stitch in quadriceps tendon. It was hypothesized that the new device would be capable of creating both whip stitches and locking stitches that are biomechanically equivalent to similar stitch techniques performed with conventional needle products. METHODS: This was a controlled biomechanical study. A total of 24 matched pair cadaveric knees were dissected and a total of 48 quadriceps tendons were harvested and tested. All tendon grafts were standardized to the same size. Samples were then randomized into the following groups, keeping the matched pairs together: (Group 1, n=16) consisted of Company W’s novel two-part suture needle design, (Group 2, n=16) consisted of Company A suture, andmore »(Group 3, n=16) consisted of Company B suture. For each group, the matched pairs were categorized into subgroups to be instrumented with either a whip stitch or a locking stitch. Two fellowship-trained surgeons performed all stitching, where they each instrumented 8 tendon grafts per group. For instrumentation, the grafts were clamped to a preparation stand in accordance with the manufacturer’s recommendations for passing each suture needle. A skin marker was used to identify and mark five evenly spaced points, 0.5 cm apart, as a guide to create a 5-stitch series. For Group 1, the whip stitch as well as the locking whip stitch were performed with a novel 2-part needle. For Group 2, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle. Similarly, for Group 3, the whip stitch was performed with loop suture needle and the locking stitch was krackow with a curved needle (Figure 1). Cyclical testing was performed using a servohydraulic testing machine (MTS Bionix) equipped with a 5kN load cell. A standardized length of tendon, 7 cm, was coupled to the MTS actuator by passing it through a cryoclamp cooled by dry ice to a temperature of -5°C (Figure 2). All testing samples were then pre-conditioned to normalize viscoelastic effects and testing variability through application of cyclical loading to 25-100 N for three cycles. The samples were then held at 89 N for 15 minutes. Thereafter, the samples were loaded to 50-200 N for 500 cycles at 1 Hz. If samples survived, they were ramped to failure at 20 mm/min. Displacement and force data was collected throughout testing. Metrics of interest were total elongation (mm), stiffness (N/mm), ultimate failure load (N) and failure mode. Data are presented as averages plus/minus standard deviation. A one-way analysis of variance (ANOVA) with a Tukey pairwise comparison post hoc analysis was used to evaluate differences between the various stitching methods. Statistical significance was set at P = .05. RESULTS SECTION: For the whip stitch methods, the total elongation was found to be equivalent across all methods (W: 36 ± 10 mm; A: 32 ± 18 mm; B: 33 ± 8 mm). The stiffness of Company A (103 ± 11 N/mm) method was significantly larger than Company W (64 ± 8 N/mm; p=.001), whereas stiffness of whip stitch by Company W was equivalent to Company B (80 ± 32 N/mm). The ultimate failure load was equivalent across all whip stitch methods (W: 379 ± 31 mm; A: 412 ± 103 mm; B: 438 ± 63 mm). For the locking stitch method, the total elongation (W: 26 ± 10 mm; A: 14 ± 2 mm; B: 29 ± 5 mm), stiffness (W: 75 ± 11 N/mm; A: 104 ± 23 N/mm; B: 79 ± 10 N/mm) and ultimate load (W: 343 ± 22 N; A: 369 ± 30 N; B: 438 ± 63 N) were found to be equivalent across all methods. The failure mode for all groups is in Table 1. The common mode of failure across study groups and stitch configuration was suture breakage. However, the whip stitch from Company A and Company B had varied failure modes. DISCUSSION: Products from the three manufacturers were found to produce biomechanically equivalent whip stitches and locking stitches with respect to elongation and ultimate failure load. The only significant difference observed was that the whip stitch created with Company A’s product had a higher stiffness than Company W’s product, which could have been due to differences in the suture material. In this cadaveric quadriceps tendon model, it was shown that when using Company W’s novel two-part suture needle, users were capable of creating whip stitches and locking stitches that achieved equivalent biomechanical performance compared to similar stitch techniques performed with conventional needle products. A failure mode limited solely to suture breakage for methods completed with Company W’s needle product suggest a reliable suture construct with limited tissue damage. SIGNIFICANCE/CLINICAL RELEVANCE: Having a suture needle device with the versatility to easily perform different stitching constructs may provide surgeons an advantage needed to improve clinical outcomes. The data presented illustrates a strong new suture technique that has equivalent performance when compared to conventional needle devices and has promising applications in graft preparation for ligament and tendon reconstruction.« less