skip to main content


Title: Rotation, Translation, and Cropping for Zero-Shot Generalization
Deep Reinforcement Learning (DRL) has shown im- pressive performance on domains with visual inputs, in particular various games. However, the agent is usually trained on a fixed environment, e.g. a fixed number of levels. A growing mass of evidence suggests that these trained models fail to generalize to even slight variations of the environments they were trained on. This paper advances the hypothesis that the lack of generalization is partly due to the input representation, and explores how rotation, cropping and translation could increase generality. We show that a cropped, translated and rotated observation can get better generalization on unseen levels of two-dimensional arcade games from the GVGAI framework. The generality of the agents is evaluated on both human-designed and procedurally generated levels.  more » « less
Award ID(s):
1717324
NSF-PAR ID:
10231878
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Games
Page Range / eLocation ID:
57 to 64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep reinforcement learning (RL) has shown impressive results in a variety of domains, learning directly from high-dimensional sensory streams. However, when neural networks are trained in a fixed environment, such as a single level in a video game, they will usually overfit and fail to generalize to new levels. When RL models overfit, even slight modifications to the environment can result in poor agent performance. This paper explores how procedurally generated levels during training can increase generality. We show that for some games procedural level generation enables generalization to new levels within the same distribution. Additionally, it is possible to achieve better performance with less data by manipulating the difficulty of the levels in response to the performance of the agent. The generality of the learned behaviors is also evaluated on a set of human-designed levels. The results suggest that the ability to generalize to human-designed levels highly depends on the design of the level generators. We apply dimensionality reduction and clustering techniques to visualize the generators’ distributions of levels and analyze to what degree they can produce levels similar to those designed by a human. 
    more » « less
  2. Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing. 
    more » « less
  3. Many machine learning problems can be abstracted in solving game theory formulations and boil down to optimizing nested objectives, such as generative adversarial networks (GANs) and multi-agent reinforcement learning. Solving these games requires finding their stable fixed points or Nash equilibrium. However, existing algorithms for solving games suffer from empirical instability, hence demanding heavy ad-hoc tuning in practice. To tackle these challenges, we resort to the emerging scheme of Learning to Optimize (L2O), which discovers problem-specific efficient optimization algorithms through data-driven training. Our customized L2O framework for differentiable game theory problems, dubbed “Learning to Play Games" (L2PG), seeks a stable fixed point solution, by predicting the fast update direction from the past trajectory, with a novel gradient stability-aware, sign-based loss function. We further incorporate curriculum learning and self-learning to strengthen the empirical training stability and generalization of L2PG. On test problems including quadratic games and GANs, L2PG can substantially accelerate the convergence, and demonstrates a remarkably more stable trajectory. Codes are available at https://github.com/VITA-Group/L2PG. 
    more » « less
  4. Deep models trained through maximum likelihood have achieved state-of-the-art results for survival analysis. Despite this training scheme, practitioners evaluate models under other criteria, such as binary classification losses at a chosen set of time horizons, e.g. Brier score (BS) and Bernoulli log likelihood (BLL). Models trained with maximum likelihood may have poor BS or BLL since maximum likelihood does not directly optimize these criteria. Directly optimizing criteria like BS requires inverse-weighting by the censoring distribution. However, estimating the censoring model under these metrics requires inverse-weighting by the failure distribution. The objective for each model requires the other, but neither are known. To resolve this dilemma, we introduce Inverse-Weighted Survival Games. In these games, objectives for each model are built from re-weighted estimates featuring the other model, where the latter is held fixed during training. When the loss is proper, we show that the games always have the true failure and censoring distributions as a stationary point. This means models in the game do not leave the correct distributions once reached. We construct one case where this stationary point is unique. We show that these games optimize BS on simulations and then apply these principles on real world cancer and critically-ill patient data. 
    more » « less
  5. Deep models trained through maximum likelihood have achieved state-of-the-art results for survival analysis. Despite this training scheme, practitioners evaluate models under other criteria, such as binary classification losses at a chosen set of time horizons, e.g. Brier score (BS) and Bernoulli log likelihood (BLL). Models trained with maximum likelihood may have poor BS or BLL since maximum likelihood does not directly optimize these criteria. Directly optimizing criteria like BS requires inverse-weighting by the censoring distribution. However, estimating the censoring model under these metrics requires inverse-weighting by the failure distribution. The objective for each model requires the other, but neither are known. To resolve this dilemma, we introduce Inverse-Weighted Survival Games. In these games, objectives for each model are built from re-weighted estimates featuring the other model, where the latter is held fixed during training. When the loss is proper, we show that the games always have the true failure and censoring distributions as a stationary point. This means models in the game do not leave the correct distributions once reached. We construct one case where this stationary point is unique. We show that these games optimize BS on simulations and then apply these principles on real world cancer and critically-ill patient data. Supplementary Material: pdf 
    more » « less