skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disentangled Variational Autoencoder based Multi-Label Classification with Covariance-Aware Multivariate Probit Model
Multi-label classification is the challenging task of predicting the presence and absence of multiple targets, involving representation learning and label correlation modeling. We propose a novel framework for multi-label classification, Multivariate Probit Variational AutoEncoder (MPVAE), that effectively learns latent embedding spaces as well as label correlations. MPVAE learns and aligns two probabilistic embedding spaces for labels and features respectively. The decoder of MPVAE takes in the samples from the embedding spaces and models the joint distribution of output targets under a Multivariate Probit model by learning a shared covariance matrix. We show that MPVAE outperforms the existing state-of-the-art methods on important computational sustainability applications as well as on other application domains, using public real-world datasets. MPVAE is further shown to remain robust under noisy settings. Lastly, we demonstrate the interpretability of the learned covariance by a case study on a bird observation dataset.  more » « less
Award ID(s):
1936950
PAR ID:
10232177
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Page Range / eLocation ID:
4313 to 4321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many discriminative natural language understanding (NLU) tasks have large label spaces. Learning such a process of large-space decision making is particularly challenging due to the lack of training instances per label and the difficulty of selection among many fine-grained labels. Inspired by dense retrieval methods for passage finding in open-domain QA, we propose a reformulation of large-space discriminative NLU tasks as a learning-to-retrieve task, leading to a novel solution named Dense Decision Retrieval (DDR). Instead of predicting fine-grained decisions as logits, DDR adopts a dual-encoder architecture that learns to predict by retrieving from a decision thesaurus. This approach not only leverages rich indirect supervision signals from easy-to-consume learning resources for dense retrieval, it also leads to enhanced prediction generalizability with a semantically meaningful representation of the large decision space. When evaluated on tasks with decision spaces ranging from hundreds to hundred-thousand scales, DDR outperforms strong baselines greatly by 27.54% in P @1 on two extreme multi-label classification tasks, 1.17% in F1 score ultra-fine entity typing, and 1.26% in accuracy on three few-shot intent classification tasks on average. 
    more » « less
  2. null (Ed.)
    A key problem in computational sustainability is to understand the distribution of species across landscapes over time. This question gives rise to challenging large-scale prediction problems since (i) hundreds of species have to be simultaneously modeled and (ii) the survey data are usually inflated with zeros due to the absence of species for a large number of sites. The problem of tackling both issues simultaneously, which we refer to as the zero-inflated multi-target regression problem, has not been addressed by previous methods in statistics and machine learning. In this paper, we propose a novel deep model for the zero-inflated multi-target regression problem. To this end, we first model the joint distribution of multiple response variables as a multivariate probit model and then couple the positive outcomes with a multivariate log-normal distribution. By penalizing the difference between the two distributions’ covariance matrices, a link between both distributions is established. The whole model is cast as an end-to-end learning framework and we provide an efficient learning algorithm for our model that can be fully implemented on GPUs. We show that our model outperforms the existing state-of-the-art baselines on two challenging real-world species distribution datasets concerning bird and fish populations. 
    more » « less
  3. Label Distribution Learning (LDL) has been extensively studied in IID data applications such as computer vision, thanks to its more generic setting over single-label and multi-label classification. This paper advances LDL into graph domains and aims to tackle a novel and fundamental heterogeneous graph label distribution learning (HGDL) problem. We argue that the graph heterogeneity reflected on node types, node attributes, and neighborhood structures can impose significant challenges for generalizing LDL onto graphs. To address the challenges, we propose a new learning framework with two key components: 1) proactive graph topology homogenization, and 2) topology and content consistency-aware graph transformer. Specifically, the former learns optimal information aggregation between meta-paths, so that the node heterogeneity can be proactively addressed prior to the succeeding embedding learning; the latter leverages an attention mechanism to learn consistency between meta-path and node attributes, allowing network topology and nodal attributes to be equally emphasized during the label distribution learning. By using KL-divergence and additional constraints, HGDL delivers an end-to-end solution for learning and predicting label distribution for nodes. Both theoretical and empirical studies substantiate the effectiveness of our HGDL approach. 
    more » « less
  4. Multi-label annotation is challenging since a large amount of well-labeled training data are required to achieve promising performance. However, providing such data is expensive while unlabeled data are widely available. To this end, we propose a novel Adaptive Graph Guided Embedding (AG2E) approach for multi-label annotation in a semi-supervised fashion, which utilizes limited labeled data associating with large-scale unlabeled data to facilitate learning performance. Specifically, a multi-label propagation scheme and an effective embedding are jointly learned to seek a latent space where unlabeled instances tend to be well assigned multiple labels. Furthermore, a locality structure regularizer is designed to preserve the intrinsic structure and enhance the multi-label annotation. We evaluate our model in both conventional multi-label learning and zero-shot learning scenario. Experimental results demonstrate that our approach outperforms other compared state-of-the-art methods. 
    more » « less
  5. Existing approaches for multi-label classification are trained offline, missing the opportunity to adapt to new data instances as they become available. To address this gap, an online multi-label classification method was proposed recently, to learn from data instances sequentially. In this work, we focus on multi-label classification tasks, in which the labels are organized in a hierarchy. We formulate online hierarchical multi-labeled classification as an online optimization task that jointly learns individual label predictors and a label threshold, and propose a novel hierarchy constraint to penalize predictions that are inconsistent with the label hierarchy structure. Experimental results on three benchmark datasets show that the proposed approach outperforms online multi-label classification methods, and achieves comparable to, or even better performance than offline hierarchical classification frameworks with respect to hierarchical evaluation metrics. 
    more » « less