- Award ID(s):
- 1650219
- NSF-PAR ID:
- 10232195
- Date Published:
- Journal Name:
- CSUNPosium: Annual Student Research and Creative Works Symposium
- Volume:
- 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Structural analyses combined with new U-Pb zircon and titanite geochronology show how two Early Cretaceous transpressional shear zones initiated and grew through a nearly complete section of continental arc crust during oblique convergence. Both shear zones reactivated Carboniferous faults that penetrated the upper mantle below Zealandia's Median Batholith but show opposite growth patterns and dissimilar relationships with respect to arc magmatism. The Grebe-Indecision Creek shear zone was magma-starved and first reactivated at ∼136 Ma as an oblique-reverse fault, along which an outboard batholith partially subducted beneath Gondwana. This system nucleated at or above ∼20 km depth and propagated downward at 2–3 mm yr−1, accumulating at least 35–45 km of horizontal (arc-normal) shortening by ∼124 Ma. In contrast, the magma-rich George Sound shear zone first reactivated in the lower crust (∼55 km depth) at ∼124 Ma and grew upward at ∼3 mm yr−1, reaching the upper crust by ∼110 Ma. In this latter system, magmatism influenced shear zone architecture and drove its growth while subduction and oblique convergence ended. As magma entered the roots of the system and began to solidify, deformation was driven out of the lower crust and into the middle crust where the system widened by a factor of three when fold-thrust belts formed on either side of a steep, central transpressional shear zone. This study illustrates how the reactivation of structural weaknesses localizes deformation at all depths in the lithosphere and shows how magma-deformation feedbacks influence shear zone connectivity and built a batholith from the bottom up.more » « less
-
Abstract Structural analyses combined with new U‐Pb zircon and titanite geochronology show how two Early Cretaceous transpressional shear zones initiated and grew through a nearly complete section of continental arc crust during oblique convergence. Both shear zones reactivated Carboniferous faults that penetrated the upper mantle below Zealandia's Median Batholith but show opposite growth patterns and dissimilar relationships with respect to arc magmatism. The Grebe‐Indecision Creek shear zone was magma‐starved and first reactivated at ∼136 Ma as an oblique‐reverse fault, along which an outboard batholith partially subducted beneath Gondwana. This system nucleated at or above ∼20 km depth and propagated downward at 2–3 mm yr−1, accumulating at least 35–45 km of horizontal (arc‐normal) shortening by ∼124 Ma. In contrast, the magma‐rich George Sound shear zone first reactivated in the lower crust (∼55 km depth) at ∼124 Ma and grew upward at ∼3 mm yr−1, reaching the upper crust by ∼110 Ma. In this latter system, magmatism influenced shear zone architecture and drove its growth while subduction and oblique convergence ended. As magma entered the roots of the system and began to solidify, deformation was driven out of the lower crust and into the middle crust where the system widened by a factor of three when fold‐thrust belts formed on either side of a steep, central transpressional shear zone. This study illustrates how the reactivation of structural weaknesses localizes deformation at all depths in the lithosphere and shows how magma‐deformation feedbacks influence shear zone connectivity and built a batholith from the bottom up.
-
A new multidisciplinary project in southwest New Zealand that combines geological and geophysical data shows how and why deep lithospheric displacements were transferred vertically through the upper plate of an incipient ocean-continent subduction zone. A key discovery includes two zones of steep, downward-curving reverse faults that uplifted and imbricated large slices of Cretaceous lower, middle, and upper crust in the Late Miocene. Geochemical and structural analyses combined with 40Ar/39Ar geochronology and published images from seismic tomography suggest that the reverse faults formed at 8–7 Ma as a consequence of a deep (~100 km) collision between subducting oceanic lithosphere and previously subducted material. This collision localized shortening and reactivated two crustal-scale shear zones from the upper mantle to the Earth’s surface. The event, which is summarized in a new lithospheric-scale profile, is helping us answer some long-standing questions about the origin of Fiordland’s unique lower-crustal exposures and what they tell us about how inherited structures can transfer motion vertically through the lithosphere as subduction initiates.more » « less
-
Abstract For the Nankai Trough and Japan Trench subduction zones, we examine the combined thermal effects of lateral heat exchange by fluid circulation in an oceanic crustal aquifer and the thickening of that aquifer due to plate‐bending‐related faulting. Faults induced by the bending of a plate entering a subduction zone are hypothesized to increase the depth over which vigorous hydrothermal circulation can redistribute heat in the oceanic crust. Previous 1‐D (vertical) thermal models have examined how aquifer thickening can mine heat from deep in the crust seaward of the trench. Here we construct 2‐D thermal models that include aquifer thickening and lateral heat exchange in the aquifer. We vary the maximum aquifer thickness and the landward extent to which hydrothermal circulation persists within the subducted crust. For the Nankai margin, models most consistent with heat flux data require vigorous fluid circulation extending up to 150 km landward of the trench; aquifer thickening is permitted but not required for models to be consistent with the heat flux observations. Conversely, for the Japan Trench, preferred models include substantial aquifer thickening (maximum aquifer thickness of 1.8–5 km); vigorous circulation extending landward of the trench is permitted but is not required. For hot subduction zones, the thermal effects of aquifer thickening are modest relative to the large lateral advective heat redistribution. For cold subduction zones, where small lateral temperature gradients limit the amount of lateral heat redistribution, aquifer thickening can be the dominant process generating thermal anomalies.
-
Abstract The architecture of lower oceanic crust at slow- and ultraslow-spreading ridge is diverse, yet the mechanisms that produce this diversity are not well understood. Particularly, the 660-km2 gabbroic massif at Atlantis Bank (Southwest Indian Ridge) exhibits significant compositional zonation, representing a high magma supply end member for accretion of the lower ocean crust at slow and ultraslow-spreading ridges. We present the petrographic and geochemical data of olivine gabbros from the 809-meter IODP Hole U1473A at Atlantis Bank gabbroic massif. Structurally, the upper portion of U1473A consists of a ∼600-meter shear zone; below this, the hole is relatively undeformed, with several minor shear zones. Olivine gabbros away from the shear zones have mineral trace element compositions indicative of high-temperature reaction with an oxide-undersaturated melt. By contrast, olivine gabbros within shear zones display petrographic and chemical features indicative of reaction with a relatively low-temperature, oxide-saturated melt. These features indicate an early stage of primitive to moderately evolved melt migration, followed by deformation-driven transport of highly evolved Fe-Ti-rich melts to high levels in this gabbroic massif. The close relationship between shear zones and the reaction with oxide-saturated melts suggests that syn-magmatic shear zones provide a conduit for late-stage, Fe-Ti-rich melt transport through Atlantis Bank lower crust. This process is critical to generate the compositional zonation observed. Thus, the degree of syn-magmatic deformation, which is fundamentally related to magma supply, plays a dominant role in developing the diversity of lower ocean crust observed at slow- and ultraslow-spreading ridges.more » « less