skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initiator-dependent kinetics of lyotropic liquid crystal-templated thermal polymerization
In this study, we examine the polymerization kinetics with different thermal initiators in lamellar and hexagonal lyotropic liquid crystal (LLC) structures directed by Pluronic L64. Ammonium persulfate is used to initiate the polymerization from the water phase, whereas azobisisobutyronitrile and benzoyl peroxide are employed to commence the reaction through the monomer phase. While the mesophase structure remains intact for all the initiation systems, the kinetics of polymerization and conversion vary significantly. The obtained differential scanning calorimetry (DSC) results reveal that, under the same conditions, the initiation from water (IFW) system results in enhanced reaction rates as well as higher monomer conversions compared to the initiation from oil (IFO) system. A higher termination rate in LLC nanoconfinements induces lower reaction rates in the IFO system. Moreover, our work on different LLC structures shows that the effect of nanoconfinement on the polymerization rate can be minimized through IFW. Chemorheology not only confirms the results obtained from DSC, but also shows that, in similar monomer conversions, the polymers obtained from the IFW system exhibit improved mechanical properties over the samples produced through the IFO process.  more » « less
Award ID(s):
1840871
PAR ID:
10232315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
15
ISSN:
1759-9954
Page Range / eLocation ID:
2236 to 2252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lyotropic liquid crystals (LLCs) have drawn attention in numerous technical fields as they feature a variety of nanometer-scale structures, processability, and diverse chemical functionality. However, they suffer from poor mechanical properties and thermal stability. Polymerization in LLCs, referred to as LLC templating, is an effective approach to overcome this issue. While the templating approach results in robust mechanical, physical, and thermal properties, retention of the parent LLC structure after polymerization has been a major concern in the field. Therefore, there have been several efforts to introduce new materials and techniques to preserve the native LLC nanostructure after polymerization. In this review, we survey the efforts put in this area along with the applications of the obtained materials from LLC templating, after providing a brief introduction of LLC structures. Moreover, polymerization kinetics in different LLC structures, as a key player in the structure retention, are analyzed. Furthermore, we discuss the outlook of the field and available opportunities. 
    more » « less
  2. Four different biorenewable methacrylated/acrylated monomers, namely, methacrylated fatty acid (MFA), methacrylated eugenol (ME), isobornyl methacrylate (IM), and isobornyl acrylate (IA) were employed as reactive diluents (RDs) to replace styrene (St) in a maleinated acrylated epoxidized soybean oil (MAESO) resin to produce bio-based thermosetting resins using free radical polymerization. The curing kinetics, gelation times, double bond conversions, thermal–mechanical properties, and thermal stabilities of MAESO-RD resin systems were characterized using DSC, rheometer, FT-IR, DMA, and TGA. The results indicate that all four RD monomers possess high bio-based carbon content (BBC) ranging from 63.2 to 76.9% and low volatilities (less than 7 wt% loss after being held isothermally at 30 °C for 5 h). Moreover, the viscosity of the MAESO-RD systems can be tailored to acceptable levels to fit the requirements for liquid molding techniques. Because of the introduction of RDs to the MAESO resin, the reaction mixtures showed an improved reactivity and an accelerated reaction rate. FT-IR results showed that almost all the CC double bonds within MAESO-RD systems were converted. The glass transition temperatures ( T g ) of the MAESO-RDs ranged from 44.8 to 100.8 °C, thus extending the range of application. More importantly, the T g of MAESO-ME resin (98.1 °C) was comparable to that of MAESO-St resin (100.8 °C). Overall, this work provided four potential RDs candidates to completely replace styrene in the MAESO resin, with the ME monomer being the most promising one. 
    more » « less
  3. Water is an environmentally friendly medium for conducting reversible deactivation radical polymerizations. In this paper, we report the investigation of iodine-mediated photocontrolled atom transfer radical polymerization (photoATRP) in aqueous media. The iodine-based initiator was generated by an in situ halogen exchange from a commercially available bromine-based initiator, ethyl α-bromophenylacetate, using different iodide salts. Fast and well-controlled polymerization of a water-soluble methacrylate monomer was achieved in water under visible light irradiation, including blue, green and yellow lights. The nature of the reaction medium greatly affected the kinetics and control over the growth of polymers. Polymerizations in water resulted in a well-controlled reaction that provided high monomer conversion and polymers with low dispersities, whereas control over the polymerization was poor in bulk or in an organic solvent, N , N -dimethylformamide. Polymerizations were performed over a wide range of visible light in the absence of any photocatalyst. The selection of water as a reaction medium enabled use of iodide salts without the need for solubilizing agents. Moreover, iodine-mediated photoATRP was successfully performed in the presence of residual oxygen, signifying the potential of this polymerization system to tolerate oxygen without performing deoxygenation processes. 
    more » « less
  4. null (Ed.)
    ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N -isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr 2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights ( M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP ( Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system. 
    more » « less
  5. Organocatalyzed ring-opening polymerization (O-ROP) of a six-five bicyclic lactone, 4,5- trans -cyclohexyl-fused γ-butyrolactone (4,5-T6GBL), can be topologically selective or living at room temperature, depending on catalyst structure. A screening of (thio)urea [(T)U] and organic base pairs revealed unique trends in reactivity for this monomer as well as the most active catalyst pairs, which were employed as received commercially to produce relatively high molecular weight ( M n up to 106 kDa), low dispersity ( Đ = 1.04) linear poly(4,5-T6GBL) in a living fashion. The ROP using a hybrid organic/inorganic pair of TU/KOMe in neat conditions led to poly(4,5-T6GBL) with even higher molecular weight ( M n = 215 kDa, Đ = 1.04). In comparison to the metal-catalyzed system, (T)U-base pairs exhibited competitive kinetics and reached higher monomer conversions, and their reactions can be performed in air. In addition, the resulting polymers required less purification to produce materials with higher onset decomposition temperature. (T)U-base pairs were selective towards linear polymerization only, whereas triazabicyclodecene can catalyze both polymerization and (quantitative) depolymerization processes, depending on reaction conditions. Cyclic polymers with M n = 41–72 kDa were selectively formed via N-heterocyclic carbene-mediated zwitterionic O-ROP. 
    more » « less