skip to main content


Title: What Makes a Successful Online Learner?: Community College Students’ Perceptions of Online Learning Challenges and Strategies
An extensive theoretical and empirical literature stresses the challenges of online learning, especially among students enrolled in open-access institutions who often struggle more due to job and family commitments and a lack of self-regulated learning skills. As online expansion continues in higher education, understanding the specific challenges students encounter in online coursework, and learning strategies that can help them cope with these challenges, can provide valuable insights to be widely shared. Using open-ended survey data collected from 365 students at a state community college system, this study examined students’ perceptions of challenges of online learning that may lead to undesirable learning outcomes and specific strategies they found effective in addressing these challenges. We combined structural topic modeling and human coding in analyzing student responses. Three sets of challenges—including insufficient time management skills, greater tendencies of multitasking and being distracted in an online learning environment, and ineffective interaction and frustrations with help-seeking—emerged from student responses. In response to these challenges, students reflected on ways to improve online learning experiences and outcomes, including improving time management skills, maintaining an organized and distraction-free study environment, proactively seeking help, and using study strategies to improve learning effectiveness.  more » « less
Award ID(s):
1750386
NSF-PAR ID:
10232482
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Online Learning Research Center
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less
  2. Mental health concerns have become a growing problem among collegiate engineering students. To date, there has been little research to understand the factors that influence student mental health within this population. Literature on engineering student mental health supports the idea that engineering students experience high levels of mental health distress, which often stems from stressors such as academic workload, maintaining a strong grade point average (GPA), and pressure from parents and/or professors. Of particular concern, distressed engineering students are less likely to seek professional help when compared to students in other majors. As a result, a comprehensive study was conducted on engineering mental health help-seeking behavior. Through secondary analysis of the data from that study, this work aims to identify common perceived stressors that may contribute to mental health distress, as well as perceived coping strategies that may be used instead of seeking professional mental health help. A diverse group of 33 engineering undergraduate students were a part of the comprehensive study on engineering mental health help-seeking behavior. For this study, qualitative data was analyzed to address two specific research questions: 1) What are the main sources of stress that engineers have experienced in their engineering training? and 2) What coping strategies have students developed as an alternative to seeking professional help? Several common perceived stressors were identified including an unsupportive and challenging engineering training environment, challenges in time management, and academic performance expectations. Perceived coping strategies identified include relationships with family, friends, and classmates and health and wellness activities such as exercise, mindfulness, and maintaining spiritual health. The results of this work will be helpful in recognizing ways to improve engineering education and increase student support. 
    more » « less
  3. This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs. 
    more » « less
  4. This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses. 
    more » « less
  5. null (Ed.)
    Background. It is well recognized that current graduate education is too narrowly focused on thesis research. Graduate students have a strong desire to gain skills for their future career success beyond thesis research. This obvious gap in professional skill training in current graduate study also leads to the common student perception that professional skills beyond academic knowledge should only be gained after completion of thesis research. Purpose. A new program is being developed to rigorously integrate professional skills training with thesis research. The approach is to establish learning communities of Graduates for Advancing Professional Skills (GAPS) to incorporate project management skill training from industry into academic research. The GAPS program seeks to address two fundamental education research questions: How can project management skill training be integrated with thesis research in graduate education? What is the role/value of learning communities in enhancing the training and retention of professional skills and the effectiveness of thesis research? Our proposed solution is that graduate student learning communities engaging in a blended online and classroom approach will promote learning of professional skills such as project and time management in thesis research activities. The purpose of this session is to establish the connection between project management and thesis research, and demonstrate the beginning progress of the GAPS program towards. Methodology/approach. The following progress is being made to establish GAPS learning communities through which to teach and practice professional skills. A website has been developed to introduce the program, recruit participants, provide information on the online modules, and survey results of participants’ current levels of knowledge and skills related to project management. A new course, “Introduction of Project Management for Thesis Research”, has been added to the course catalog and open to enrollment for students from different majors. In addition, learning modules including project charter, scheduling, communication, teamwork, critical path method, and lean concept are developed. Case studies and examples have been developed to help students learn how to utilize project management skills in their thesis research. Conclusions. The concept of integrating professional skills training with thesis research through learning communities has been demonstrated. There are multiple advantages of this approach, including efficient utilization of the current resources, and faculty buy-in. Preliminary data from the first cohort are being collected and analyzed to identify students’ needs, benefits of the program, and areas of improvement for future cohort iterations. Implications. The GAPS program will improve professional skill training for graduate students through communities of practice. This new learning model has the potential to fundamentally change the culture of graduate education. We believe the method demonstrated here can be broadly applied to different engineering majors, and even broadly to all thesis research. 
    more » « less