skip to main content

Title: What Makes a Successful Online Learner?: Community College Students’ Perceptions of Online Learning Challenges and Strategies
An extensive theoretical and empirical literature stresses the challenges of online learning, especially among students enrolled in open-access institutions who often struggle more due to job and family commitments and a lack of self-regulated learning skills. As online expansion continues in higher education, understanding the specific challenges students encounter in online coursework, and learning strategies that can help them cope with these challenges, can provide valuable insights to be widely shared. Using open-ended survey data collected from 365 students at a state community college system, this study examined students’ perceptions of challenges of online learning that may lead to undesirable learning outcomes and specific strategies they found effective in addressing these challenges. We combined structural topic modeling and human coding in analyzing student responses. Three sets of challenges—including insufficient time management skills, greater tendencies of multitasking and being distracted in an online learning environment, and ineffective interaction and frustrations with help-seeking—emerged from student responses. In response to these challenges, students reflected on ways to improve online learning experiences and outcomes, including improving time management skills, maintaining an organized and distraction-free study environment, proactively seeking help, and using study strategies to improve learning effectiveness.
Authors:
; ; ;
Award ID(s):
1750386
Publication Date:
NSF-PAR ID:
10232482
Journal Name:
Online Learning Research Center
Sponsoring Org:
National Science Foundation
More Like this
  1. This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines themore »TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses.« less
  2. Background. It is well recognized that current graduate education is too narrowly focused on thesis research. Graduate students have a strong desire to gain skills for their future career success beyond thesis research. This obvious gap in professional skill training in current graduate study also leads to the common student perception that professional skills beyond academic knowledge should only be gained after completion of thesis research. Purpose. A new program is being developed to rigorously integrate professional skills training with thesis research. The approach is to establish learning communities of Graduates for Advancing Professional Skills (GAPS) to incorporate project managementmore »skill training from industry into academic research. The GAPS program seeks to address two fundamental education research questions: How can project management skill training be integrated with thesis research in graduate education? What is the role/value of learning communities in enhancing the training and retention of professional skills and the effectiveness of thesis research? Our proposed solution is that graduate student learning communities engaging in a blended online and classroom approach will promote learning of professional skills such as project and time management in thesis research activities. The purpose of this session is to establish the connection between project management and thesis research, and demonstrate the beginning progress of the GAPS program towards. Methodology/approach. The following progress is being made to establish GAPS learning communities through which to teach and practice professional skills. A website has been developed to introduce the program, recruit participants, provide information on the online modules, and survey results of participants’ current levels of knowledge and skills related to project management. A new course, “Introduction of Project Management for Thesis Research”, has been added to the course catalog and open to enrollment for students from different majors. In addition, learning modules including project charter, scheduling, communication, teamwork, critical path method, and lean concept are developed. Case studies and examples have been developed to help students learn how to utilize project management skills in their thesis research. Conclusions. The concept of integrating professional skills training with thesis research through learning communities has been demonstrated. There are multiple advantages of this approach, including efficient utilization of the current resources, and faculty buy-in. Preliminary data from the first cohort are being collected and analyzed to identify students’ needs, benefits of the program, and areas of improvement for future cohort iterations. Implications. The GAPS program will improve professional skill training for graduate students through communities of practice. This new learning model has the potential to fundamentally change the culture of graduate education. We believe the method demonstrated here can be broadly applied to different engineering majors, and even broadly to all thesis research.« less
  3. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparationmore »and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less
  4. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES studentsmore »participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering.« less
  5. Most chemical engineering core classes are best taught when students are exposed to a face-to-face learning/teaching environment. With the arrival of coronavirus disease 2019 (COVID-19), the whole education system and the setting were disrupted at Hampton University (HU). Traditional in-person face-to-face classes were forced to move to remote instructions to maintain a healthy and safe campus environment and minimize the spread of COVID-19 on campus and in the community. As an instructor teaching core courses and unit operations laboratory in the Department of Chemical Engineering, it was challenging to move completely virtual and deliver instructions remotely without affecting students' learningmore »outcomes. However, with the appropriate modern technologies and adapting to the students' change and needs, online teaching can be done efficiently and can still have efficient learning outcomes. Various activities were introduced to make the online/virtual class environment engaging in developing technical and professional skills and inducing learning for students. Using the latest educational tools and online resources, formative assessments were conducted throughout the course in an effort to improve student learning and instructor teaching. In addition to that, innovative ways of technology were also used to evaluate student learning and understanding of the material for grading and reporting purposes. Many of the modern educational tools, including Blackboard Collaborate Ultra, Ka-hoot, linoit, surveys, polls, and chemical engineering processes’ simulations and videos were in-troduced to make the synchronous sessions interactive. Likert-like surveys conducted were anal-yses to gauge the effectiveness of incorporation of technology during remote learning. This paper describes the innovative use of technologies to adapt to the COVID-19 pandemic in the Chemical Engineering Classes. It will also explain the strategies to assess the mode of delivery efficacy and how to change the course of teaching to adapt to the students' changing needs.« less