skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dimers, orientifolds and stability of supersymmetry breaking vacua
A bstract We study (orientifolded) toric Calabi-Yau singularities in search for D-brane configurations which lead to dynamical supersymmetry breaking at low energy. By exploiting dimer techniques we are able to determine that while most realizations lead to a Coulomb branch instability, a rather specific construction admits a fully stable supersymmetry breaking vacuum. We describe the geometric structure that a singularity should have in order to host such a construction, and present its simplest example, the Octagon.  more » « less
Award ID(s):
1854179 1820721
PAR ID:
10232612
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Λ. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Λ and the gravitino mass M 3 / 2 , respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Λ has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M 3 / 2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is $$ M=\mathcal{O}\left({\Lambda}^{\frac{1}{8}}\right)=\mathcal{O}\left(\textrm{TeV}\right). $$ M = O Λ 1 8 = O TeV . This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry. 
    more » « less
  2. Abstract We study the constraints of spacetime supersymmetry for perturbative three– and two–dimensional Minkowski vacua of the critical heterotic string. Assuming a standard RNS construction of the spacetime supersymmetry generators and a compact unitary internal superconformal worldsheet theory, we describe the worldsheet structures associated to various spacetime supersymmetries. In three dimensions we show that there are no CFT surprises: each allowed spacetime supersymmetry is realized by a supergravity compactification. As a recent orbifold construction shows, in two dimensions there are more exotic possibilities, and we discuss how these fit into our analysis. 
    more » « less
  3. Abstract The recent muong− 2 result from Fermilab combined with the Brookhaven result, strongly points to new physics beyond the Standard Model which can be well described by the electroweak sector of supersymmetry if the masses of the sleptons and some of the electroweak gauginos are in the few hundred GeV range. However, the Higgs boson mass measurement at 125 GeV indicates a mass scale for squarks which lies in the few TeV region indicating a split mass spectrum between squarks and sleptons. This apparent puzzle is resolved in a natural way in gluino-driven radiative breaking of the electroweak symmetry where radiative breaking is driven by a large gluino mass and the gluino color interactions lead to a large splitting between the squarks and the sleptons. We show that an analysis without prejudice using an artificial neural network also leads to the gluino-driven radiative breaking. We use a set of benchmarks and a deep neural network analysis to test the model for the discovery of light sleptons and sneutrinos at HL-LHC and HE-LHC. 
    more » « less
  4. A bstract Four-dimensional $$ \mathcal{N} $$ N = 4 super Yang-Mills, with a codimension-one defect breaking half of the supersymmetry, arises as the field theory description of the D3/D5 intersection in the holographic limit. This is one of the earliest, most extensively studied, and commonly used systems in holography. In this note we give the full R-symmetry-covariant supersymmetry variations for this system. We also provide the supercurrents and compute the algebra of the corresponding supercharges, obtaining the full set of central charges. We show that magnetically charged finite-energy field configurations preserving half of the supersymmetry are solutions to a new form of the extended Bogomolny equations, in which the defect fields play the role of jumping data for the Nahm-like part of the equations. In the appendices, we explain the connection between our results and the superspace-based formulations in the literature. 
    more » « less
  5. A bstract We show that the strong CP problem is solved in a large class of compactifications of string theory. The Peccei-Quinn mechanism solves the strong CP problem if the CP-breaking effects of the ultraviolet completion of gravity and of QCD are small compared to the CP-preserving axion potential generated by low-energy QCD instantons. We characterize both classes of effects. To understand quantum gravitational effects, we consider an ensemble of flux compactifications of type IIB string theory on orientifolds of Calabi-Yau hypersurfaces in the geometric regime, taking a simple model of QCD on D7-branes. We show that the D-brane instanton contribution to the neutron electric dipole moment falls exponentially in N 4 , with N the number of axions. In particular, this contribution is negligible in all models in our ensemble with N > 17. We interpret this result as a consequence of large N effects in the geometry that create hierarchies in instanton actions and also suppress the ultraviolet cutoff. We also compute the CP breaking due to high-energy instantons in QCD. In the absence of vectorlike pairs, we find contributions to the neutron electric dipole moment that are not excluded, but that could be accessible to future experiments if the scale of supersymmetry breaking is sufficiently low. The existence of vectorlike pairs can lead to a larger dipole moment. Finally, we show that a significant fraction of models are allowed by standard cosmological and astrophysical constraints. 
    more » « less