Abstract We adopt the deep learning method casi-3d (Convolutional Approach to Structure Identification-3D) to systemically identify protostellar outflows in 12 CO and 13 CO observations of the nearby molecular clouds, Ophiuchus, Taurus, Perseus, and Orion. The total outflow masses are 267 M ⊙ , 795 M ⊙ , 1305 M ⊙ , and 6332 M ⊙ for Ophiuchus, Taurus, Perseus, and Orion, respectively. We show the outflow mass in each cloud is linearly proportional to the total number of young stellar objects. The estimated total 3D deprojected outflow energies are 9 × 10 45 erg, 6 × 10 46 erg, 1.2 × 10 47 erg, and 6 × 10 47 erg for Ophiuchus, Taurus, Perseus, and Orion, respectively. The energy associated with outflows is sufficient to offset turbulent dissipation at the current epoch for all four clouds. All clouds also exhibit a break point in the spatial power spectrum of the outflow prediction map, which likely corresponds to the typical outflow mass and energy injection scale.
more »
« less
Ubiquitous Molecular Outflows in z > 4 Massive, Dusty Galaxies. I. Sample Overview and Clumpy Structure in Molecular Outflows on 500 pc Scales
More Like this
-
-
The dissipation of angular momentum of collapsing molecular cores is a key component in the formation of stars. Previous observations have reported that highly collimated protostellar jets can remove angular momentum from low-mass protostars. In contrast, there is no clear evidence that this occurs for high-mass protostars. Here we report the results of developing a data analysis platform to investigate whether molecular masers in the outflows of two high-mass star forming regions, DR21(OH) and W75N(B), trace net angular momentum. No statistically significant evidence was found for masers to trace net angular momentum transfer in these regions. However, our results show that high-angular resolution observations of masers near high-mass protostars have the potential of revealing this phenomenon at scales similar to the specific angular momentum carried by planets in our Solar System.more » « less
-
null (Ed.)Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.more » « less