Abstract A bipartite graph $$H = \left (V_1, V_2; E \right )$$ with $$\lvert V_1\rvert + \lvert V_2\rvert = n$$ is semilinear if $$V_i \subseteq \mathbb {R}^{d_i}$$ for some $$d_i$$ and the edge relation E consists of the pairs of points $$(x_1, x_2) \in V_1 \times V_2$$ satisfying a fixed Boolean combination of s linear equalities and inequalities in $$d_1 + d_2$$ variables for some s . We show that for a fixed k , the number of edges in a $$K_{k,k}$$ -free semilinear H is almost linear in n , namely $$\lvert E\rvert = O_{s,k,\varepsilon }\left (n^{1+\varepsilon }\right )$$ for any $$\varepsilon> 0$$ ; and more generally, $$\lvert E\rvert = O_{s,k,r,\varepsilon }\left (n^{r-1 + \varepsilon }\right )$$ for a $$K_{k, \dotsc ,k}$$ -free semilinear r -partite r -uniform hypergraph. As an application, we obtain the following incidence bound: given $$n_1$$ points and $$n_2$$ open boxes with axis-parallel sides in $$\mathbb {R}^d$$ such that their incidence graph is $$K_{k,k}$$ -free, there can be at most $$O_{k,\varepsilon }\left (n^{1+\varepsilon }\right )$$ incidences. The same bound holds if instead of boxes, one takes polytopes cut out by the translates of an arbitrary fixed finite set of half-spaces. We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and point out some connections to the model-theoretic trichotomy in o -minimal structures (showing that the failure of an almost-linear bound for some definable graph allows one to recover the field operations from that graph in a definable manner). 
                        more » 
                        « less   
                    
                            
                            RAMSEY GROWTH IN SOME NIP STRUCTURES
                        
                    
    
            Abstract We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek ( Duke Mathematical Journal 163 (12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded $$o$$ -minimal expansions of $$\mathbb{R}$$ , and show that it does not hold in $$\mathbb{R}_{\exp }$$ . This provides a new combinatorial characterization of polynomial boundedness for $$o$$ -minimal structures. We also prove an analog for relations definable in $$P$$ -minimal structures, in particular for the field of the $$p$$ -adics. Generalizing Conlon et al.  ( Transactions of the American Mathematical Society 366 (9) (2014), 5043–5065), we show that in distal structures the upper bound for $$k$$ -ary definable relations is given by the exponential tower of height $k-1$ . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1651321
- PAR ID:
- 10232815
- Date Published:
- Journal Name:
- Journal of the Institute of Mathematics of Jussieu
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1474-7480
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less
- 
            Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$more » « less
- 
            Abstract Every discrete definable subset of a closed asymptotic couple with ordered scalar field $${\boldsymbol {k}}$$ is shown to be contained in a finite-dimensional $${\boldsymbol {k}}$$ -linear subspace of that couple. It follows that the differential-valued field $$\mathbb {T}$$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $$\mathbb {R}$$ as the underlying set for the second sort.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    