We first introduce the notion of meta-rank for a 2-parameter persistence module, an invariant that captures the information behind images of morphisms between 1D slices of the module. We then define the meta-diagram of a 2-parameter persistence module to be the Möbius inversion of the meta-rank, resulting in a function that takes values from signed 1-parameter persistence modules. We show that the meta-rank and meta-diagram contain information equivalent to the rank invariant and the signed barcode. This equivalence leads to computational benefits, as we introduce an algorithm for computing the meta-rank and meta-diagram of a 2-parameter module M indexed by a bifiltration of n simplices in O(n^3) time. This implies an improvement upon the existing algorithm for computing the signed barcode, which has O(n^4) time complexity. This also allows us to improve the existing upper bound on the number of rectangles in the rank decomposition of M from O(n^4) to O(n^3). In addition, we define notions of erosion distance between meta-ranks and between meta-diagrams, and show that under these distances, meta-ranks and meta-diagrams are stable with respect to the interleaving distance. Lastly, the meta-diagram can be visualized in an intuitive fashion as a persistence diagram of diagrams, which generalizes the well-understood persistent diagram in the 1-parameter setting.
more »
« less
Contractibility of a persistence map preimage
Abstract This work is motivated by the following question in data-driven study of dynamical systems: given a dynamical system that is observed via time series of persistence diagrams that encode topological features of snapshots of solutions, what conclusions can be drawn about solutions of the original dynamical system? We address this challenge in the context of an N dimensional system of ordinary differential equation defined in $${\mathbb {R}}^N$$ R N . To each point in $${\mathbb {R}}^N$$ R N (e.g. an initial condition) we associate a persistence diagram. The main result of this paper is that under this association the preimage of every persistence diagram is contractible. As an application we provide conditions under which multiple time series of persistence diagrams can be used to conclude the existence of a fixed point of the differential equation that generates the time series.
more »
« less
- PAR ID:
- 10233006
- Date Published:
- Journal Name:
- Journal of Applied and Computational Topology
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2367-1726
- Page Range / eLocation ID:
- 509 to 523
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$.more » « less
-
Buchin, Kevin and (Ed.)Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams - a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.more » « less
-
null (Ed.)Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. In an experimental setting, this transition could lead to incorrect data or damage to the entire experiment. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here, we present Bifurcations using ZigZag (BuZZ), a one-step method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system.more » « less
-
null (Ed.)Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.more » « less
An official website of the United States government

