skip to main content


Title: Guts, Volume and skein modules of 3-manifolds
We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link.  more » « less
Award ID(s):
2004155
NSF-PAR ID:
10233623
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fundamenta Mathematicae
ISSN:
1730-6329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It was previously shown by the first author that every knot in [Formula: see text] is ambient isotopic to one component of a two-component, alternating, hyperbolic link. In this paper, we define the alternating volume of a knot [Formula: see text] to be the minimum volume of any link [Formula: see text] in a natural class of alternating, hyperbolic links such that [Formula: see text] is ambient isotopic to a component of [Formula: see text]. Our main result shows that the alternating volume of a knot is coarsely equivalent to the twist number of a knot. 
    more » « less
  2. Measuring the entanglement complexity of collections of open curves in 3-space has been an intractable, yet pressing mathematical problem, relevant to a plethora of physical systems, such as in polymers and biopolymers. In this manuscript, we give a novel definition of the Jones polynomial that generalizes the classic Jones polynomial to collections of open curves in 3-space. More precisely, first we provide a novel definition of the Jones polynomial of linkoids (open link diagrams) and show that this is a well-defined single variable polynomial that is a topological invariant, which, for link-type linkoids, coincides with that of the corresponding link. Using the framework introduced in (Panagiotou E, Kauffman L. 2020 Proc. R. Soc. A 476 , 20200124. (( doi:10.1098/rspa.2020.0124 )), this enables us to define the Jones polynomial of collections of open and closed curves in 3-space. For collections of open curves in 3-space, the Jones polynomial has real coefficients and it is a continuous function of the curves’ coordinates. As the endpoints of the curves tend to coincide, the Jones polynomial tends to that of the resultant link. We demonstrate with numerical examples that the novel Jones polynomial enables us to characterize the topological/geometrical complexity of collections of open curves in 3-space for the first time. 
    more » « less
  3. null (Ed.)
    In this manuscript, we introduce a method to measure entanglement of curves in 3-space that extends the notion of knot and link polynomials to open curves. We define the bracket polynomial of curves in 3-space and show that it has real coefficients and is a continuous function of the curve coordinates. This is used to define the Jones polynomial in a way that it is applicable to both open and closed curves in 3-space. For open curves, the Jones polynomial has real coefficients and it is a continuous function of the curve coordinates and as the endpoints of the curve tend to coincide, the Jones polynomial of the open curve tends to that of the resulting knot. For closed curves, it is a topological invariant, as the classical Jones polynomial. We show how these measures attain a simpler expression for polygonal curves and provide a finite form for their computation in the case of polygonal curves of 3 and 4 edges. 
    more » « less
  4. We obtain a formula for the Turaev-Viro invariants of a link complement in terms of values of the colored Jones polynomial of the link. As an application we give the first examples for which the volume conjecture of Chen and the third named author\,\cite{Chen-Yang} is verified. Namely, we show that the asymptotics of the Turaev-Viro invariants of the Figure-eight knot and the Borromean rings complement determine the corresponding hyperbolic volumes. Our calculations also exhibit new phenomena of asymptotic behavior of values of the colored Jones polynomials that seem not to be predicted by neither the Kashaev-Murakami-Murakami volume conjecture and various of its generalizations nor by Zagier's quantum modularity conjecture. We conjecture that the asymptotics of the Turaev-Viro invariants of any link complement determine the simplicial volume of the link, and verify it for all knots with zero simplicial volume. Finally we observe that our simplicial volume conjecture is stable under connect sum and split unions of links. 
    more » « less
  5. We study the geometry of hyperbolic knots that admit alternating projections on embedded surfaces in closed 3–manifolds. We show that, under mild hypothesis, their cusp area admits two-sided bounds in terms of the twist number of the alternating projection and the genus of the projection surface. As a result, we derive diagrammatic estimates of slope lengths and give applications to Dehn surgery. These generalize results of Lackenby and Purcell about alternating knots in the 3–sphere. Using a result of Kalfagianni and Purcell, we point out that alternating knots on surfaces of higher genus can have arbitrarily small cusp density, in contrast to alternating knots on spheres whose cusp densities are bounded away from zero due to Lackenby and Purcell. 
    more » « less