Title: The Recent Decline and Recovery of Indian Summer Monsoon Rainfall: Relative Roles of External Forcing and Internal Variability
Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia. more »« less
A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability.
Suo, Lingling; Gastineau, Guillaume; Gao, Yongqi; Liang, Yu-Chiao; Ghosh, Rohit; Tian, Tian; Zhang, Ying; Kwon, Young-Oh; Otterå, Odd Helge; Yang, Shuting; et al
(, Environmental Research Letters)
Abstract Large ensemble simulations with six atmospheric general circulation models involved are utilized to verify the interdecadal Pacific oscillation (IPO) impacts on the trend of Eurasian winter surface air temperatures (SAT) during 1998–2013, a period characterized by the prominent Eurasia cooling (EC). In our simulations, IPO brings a cooling trend over west-central Eurasia in 1998–2013, about a quarter of the observed EC in that area. The cooling is associated with the phase transition of the IPO to a strong negative. However, the standard deviation of the area-averaged SAT trends in the west EC region among ensembles, driven by internal variability intrinsic due to the atmosphere and land, is more than three times the isolated IPO impacts, which can shadow the modulation of the IPO on the west Eurasia winter climate.
Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.
Abstract We use a statistical emulation technique to construct synthetic ensembles of global and regional sea‐air carbon dioxide (CO2) flux from four observation‐based products over 1985–2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific externally forced signal and calculate the rank of the observed trends within the distribution of statistically modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation‐based products exhibit small negative trends in globally integrated sea‐air CO2flux (i.e., enhanced ocean CO2absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea‐air CO2flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two standard deviations away from the mean in their ensembles. Our approach provides a new perspective on the important role of internal variability in sea‐air CO2flux trends, and furthers understanding of the role of internal and external processes in driving observed sea‐air CO2flux variability.
Tiger, Benjamin_H; Ummenhofer, Caroline_C
(, Geophysical Research Letters)
Abstract Volcanic eruptions can have significant climate impacts and serve as useful natural experiments for better understanding the effects of abrupt, externally forced climate change. Here, we investigate the Indian Ocean Dipole's (IOD) response to the largest tropical volcanic eruptions of the last millennium. Post‐eruption composites show a strong negative IOD developing in the eruption year, and a positive IOD the following year. The IOD and El Niño‐Southern Oscillation (ENSO) show a long‐term damped oscillatory response that can take up to 8 years to return to pre‐eruptive baselines. Moreover, the Interdecadal Pacific Oscillation (IPO) phase at the time of eruption controls the IOD response to intense eruptions, with negative (positive) IPO phasing favoring more negative (positive) IOD values via modulation of the background state of the eastern Indian Ocean thermocline depth. These results have important implications for climate risk in low‐likelihood, high‐impact scenarios, particularly in vulnerable communities unprepared for IOD and ENSO extremes.
@article{osti_10233651,
place = {Country unknown/Code not available},
title = {The Recent Decline and Recovery of Indian Summer Monsoon Rainfall: Relative Roles of External Forcing and Internal Variability},
url = {https://par.nsf.gov/biblio/10233651},
DOI = {10.1175/JCLI-D-19-0833.1},
abstractNote = {Abstract The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day −1 decade −1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day −1 decade −1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia.},
journal = {Journal of Climate},
volume = {33},
number = {12},
author = {Huang, Xin and Zhou, Tianjun and Turner, Andrew and Dai, Aiguo and Chen, Xiaolong and Clark, Robin and Jiang, Jie and Man, Wenmin and Murphy, James and Rostron, John and Wu, Bo and Zhang, Lixia and Zhang, Wenxia and Zou, Liwei},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.