A bstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices : codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings. 
                        more » 
                        « less   
                    
                            
                            Topological operators and completeness of spectrum in discrete gauge theories
                        
                    
    
            A bstract In many gauge theories, the existence of particles in every representation of the gauge group (also known as completeness of the spectrum) is equivalent to the absence of one-form global symmetries. However, this relation does not hold, for example, in the gauge theory of non-abelian finite groups. We refine this statement by considering topological operators that are not necessarily associated with any global symmetry. For discrete gauge theory in three spacetime dimensions, we show that completeness of the spectrum is equivalent to the absence of certain Gukov-Witten topological operators. We further extend our analysis to four and higher spacetime dimensions. Since topological operators are natural generalizations of global symmetries, we discuss evidence for their absence in a consistent theory of quantum gravity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1911298
- PAR ID:
- 10233791
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 12
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ât Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules.more » « less
- 
            A long-standing problem in the study of topological phases of matter has been to understand the types of fractional topological insulator (FTI) phases possible in 3+1 dimensions. Unlike ordinary topological insulators of free fermions, FTI phases are characterized by fractional đ-angles,long-range entanglement, and fractionalization. Starting from a simple family of â¤_N lattice gauge theories due to Cardy and Rabinovici, we develop a class of FTI phases based on the physical mechanism of oblique confinement and the modern language of generalized global symmetries. We dub these phases oblique topological insulators. Oblique TIs arise when dyonsâbound states of electric charges and monopolesâcondense, leading to FTI phases characterized by topological order, emergent one-forms symmetries, and gapped boundary states not realizable in 2+1-D alone.Based on the lattice gauge theory, we present continuum topological quantum field theories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge fields. We show explicitly that these TQFTs capture both the generalized global symmetries and topological orders seen in the lattice gauge theory. We also demonstrate that these theories exhibit a universal âgeneralized magneto-electric effectâ in the presence of two-form background gauge fields. Moreover,we characterize the possible boundary topological orders of oblique TIs,finding a new set of boundary states not studied previously for these kinds of TQFTs.more » « less
- 
            Abstract A recent development in our understanding of the theory of quantum fields is the fact that familiar gauge theories in spacetime dimensions greater than two can have non-invertible symmetries generated by topological defects. The hallmark of these non-invertible symmetries is that the fusion rule deviates from the usual group-like structure, and in particular the fusion coefficients take values in topological field theories (TFTs) rather than in mere numbers. In this paper we begin an exploration of the associativity structure of non-invertible symmetries in higher dimensions. The first layer of associativity is captured by F-symbols, which we find to assume values in TFTs that have one dimension lower than that of the defect. We undertake an explicit analysis of the F-symbols for the non-invertible chiral symmetry that is preserved by the massless QED and explore their physical implications. In particular, we show the F-symbol TFTs can be detected by probing the correlators of topological defects with ât Hooft lines. Furthermore, we derive the WardâTakahashi identity that arises from the chiral symmetry on a large class of four-dimensional manifolds with non-trivial topologies directly from the topological data of the symmetry defects, without referring to a Lagrangian formulation of the theory.more » « less
- 
            A bstract We draw attention to a class of generalized global symmetries, which we call âChern-Weil global symmetries,â that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 â§ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    