skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral elasticity of the gyroid lattice
The gyroid lattice is a metamaterial which allows chirality that is tunable by geometry. Gyroid lattices were made in chiral and nonchiral form by 3D printing. The chiral lattices exhibited nonclassical elastic effects including coupling between compressive stress and torsional deformation. Gyroid lattices can approach upper bounds on elastic modulus. Effective modulus is increased by distributed moments but is, for gyroid cylinders of sufficiently small radius, softened by a surface layer of incomplete cells. Such size dependence is similar to that in foams but is unlike most lattices.  more » « less
Award ID(s):
1906890
PAR ID:
10234560
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review letters
Volume:
125
ISSN:
1092-0145
Page Range / eLocation ID:
205502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, this work aims to demonstrate the topological effect on the mechanicalx characteristics of selfassembled block copolymers (BCPs). The lamellae-forming polystyrene- block -polydimethylsiloxane (PSb -PDMS) can be self-assembled into various nanostructured monoliths with the use of PS-selective solvent for solvent annealing, giving diamond, gyroid, and cylinder structures with increasing the swelling degree of PS domain (the effective volume fraction of the PS segment after solvent annealing followed by evaporation). The stiffness of the self-assembled monoliths is scrutinized by nanoindentation test. For intrinsic PS- b -PDMS monolith with lamellar structure, the reduced elastic modulus as calculated from the measured stiffness is 0.91 GPa. By contrast, the PS- b -PDMS monolith with cylinder structure gives a significant reduction in reduced elastic modulus with the value of 0.52 GPa due to the introduced microporosity to the PS domain from solvent annealing using PS-selective solvent, resulting in the lower confrontation for continuous layer-by-layer deformation of hard PS and soft PDMS domains. In the case of gyroid-structured PS- b -PDMS monolith, it is unexpected to exhibit a significant increase in the reduced elastic modulus with a value of 1.6 GPa: note that the effect of microporosity is still significant. Accordingly, the enhancement of the reduced elastic modulus is attributed to the effect of deliberate structuring with network topology ( i.e., three-dimensional co-continuous hard PS and soft PDMS domains) that is able to hold the occurrence of large-scale deformation. In contrast to the gyroid with a three-strut texture, the diamond-structured PS- b -PDMS monolith with a four-strut texture is superior to the gyroid with a reduced elastic modulus of 2.2 GPa, further confirming the suggested topology effect. 
    more » « less
  2. The gyroid lattice is prepared in chiral and non‐chiral forms. The chiral gyroid lattice is observed to exhibit temperature‐induced twist with the direction of twist corresponding to the sense of chirality. This effect is a nonclassical effect that cannot occur in classical elasticity or classical thermo‐elasticity but is allowable in Cosserat solids. Poisson's ratio of the gyroid is known to be about 0.3 with minimal dependence on size. In contrast to squeeze–twist coupling in which substantial size effects occur with slender specimens twisting much more than thicker ones, thermal–twist coupling exhibits opposite and less consistent size effects of much smaller magnitude. 
    more » « less
  3. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing. 
    more » « less
  4. Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1]. 
    more » « less
  5. Abstract Over the past two decades, metamaterials have led to an increasing number of biosensing and nanophotonic applications due to the possibility of a careful control of light propagating through subwavelength features. Chiral nanostructures (characterized by the absence of any mirror symmetry), in particular, give rise to unique chiro‐optical properties such as circular dichroism and optical activity. Here, a gyroid optical metamaterial with a periodicity of 65 nm exhibiting a strong circular dichroism at visible wavelengths is presented. This bottom‐up approach, based on metallic replication of the gyroid morphology in triblock terpolymer films, generates a large area of periodic optical metamaterials. A strong circular dichroism in gold and silver gyroid metamaterials at visible wavelengths is observed. It is shown that the circular dichroism is inherently linked to the handedness of the gyroid nanostructure and its tuneability is demonstrated. The optical effects are discussed and compared to other existing systems, showing the potential of bottom‐up approaches for large‐scale circular filters and chiral sensing. 
    more » « less