skip to main content


Title: A Bayesian non-parametric mixed-effects model of microbial growth curves
Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth behavior through a set of summarizing parameters. However, estimation of these parameters from data is confounded by random effects such as experimental variability, batch effects or differences in experimental material. A systematic statistical method to identify and correct for such confounding effects in population growth data is not currently available. Further, our previous work has demonstrated that parametric models are insufficient to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding effects on measured population growth.  more » « less
Award ID(s):
1651117
NSF-PAR ID:
10234578
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Papin, Jason A.
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
16
Issue:
10
ISSN:
1553-7358
Page Range / eLocation ID:
e1008366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In psychophysics and psychometrics, an integral method to the discipline involves charting how a person’s response pattern changes according to a continuum of stimuli. For instance, in hearing science, Visual Analog Scaling tasks are experiments in which listeners hear sounds across a speech continuum and give a numeric rating between 0 and 100 conveying whether the sound they heard was more like word “a” or more like word “b” (i.e. each participant is giving a continuous categorization response). By taking all the continuous categorization responses across the speech continuum, a parametric curve model can be fit to the data and used to analyze any individual’s response pattern by speech continuum. Standard statistical modeling techniques are not able to accommodate all of the specific requirements needed to analyze these data. Thus, Bayesian hierarchical modeling techniques are employed to accommodate group-level non-linear curves, individual-specific non-linear curves, continuum-level random effects, and a subject-specific variance that is predicted by other model parameters. In this paper, a Bayesian hierarchical model is constructed to model the data from a Visual Analog Scaling task study of mono-lingual and bi-lingual participants. Any nonlinear curve function could be used and we demonstrate the technique using the 4-parameter logistic function. Overall, the model was found to fit particularly well to the data from the study and results suggested that the magnitude of the slope was what most defined the differences in response patterns between continua.

     
    more » « less
  2. Abstract

    Non‐random mating among individuals can lead to spatial clustering of genetically similar individuals and population stratification. This deviation from panmixia is commonly observed in natural populations. Consequently, individuals can have parentage in single populations or involving hybridization between differentiated populations. Accounting for this mixture and structure is important when mapping the genetics of traits and learning about the formative evolutionary processes that shape genetic variation among individuals and populations. Stratified genetic relatedness among individuals is commonly quantified using estimates of ancestry that are derived from a statistical model. Development of these models for polyploid and mixed‐ploidy individuals and populations has lagged behind those for diploids. Here, we extend and test a hierarchical Bayesian model, calledentropy, which can use low‐depth sequence data to estimate genotype and ancestry parameters in autopolyploid and mixed‐ploidy individuals (including sex chromosomes and autosomes within individuals). Our analysis of simulated data illustrated the trade‐off between sequencing depth and genome coverage and found lower error associated with low‐depth sequencing across a larger fraction of the genome than with high‐depth sequencing across a smaller fraction of the genome. The model has high accuracy and sensitivity as verified with simulated data and through analysis of admixture among populations of diploid and tetraploidArabidopsis arenosa.

     
    more » « less
  3. Abstract

    A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed‐effects model to capture ring‐width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas‐fir's range; narrower rings and stronger climate sensitivity occurred across the semi‐arid interior. Ring‐width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas‐fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed‐effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree‐ring networks and results as a calibration target for next‐generation vegetation models.

     
    more » « less
  4. Abstract

    Changes in ecological conditions can induce changes in behavior and demography of wild organisms, which in turn may influence population dynamics. Black brant (Branta bernicla nigricans) nesting in colonies on the Yukon–Kuskokwim Delta (YKD) in western Alaska have declined substantially (~50%) since the turn of the century. Black brant are herbivores that rely heavily onCarex subspathacea(Hoppner's sedge) during growth and development. The availability ofC. subspathaceaaffects gosling growth rates, which subsequently affect pre‐ and postfledging survival, as well as size and breeding probability as an adult. We predicted that long‐term declines inC. subspathaceahave affected gosling growth rates, despite the potential of behavior to buffer changes in food availability during brood rearing. We used Bayesian hierarchical mixed‐effects models to examine long‐term (1987–2015) shifts in brant behavior during brood rearing, forage availability, and gosling growth rates at the Tutakoke River colony. We showed that locomotion behaviors have increased (β = 0.05, 95% CRI: 0.032–0.068) while resting behaviors have decreased (β = −0.024, 95% CRI: −0.041 to −0.007), potentially in response to long‐term shifts in forage availability and brood density. Concurrently, gosling growth rates have decreased substantially (β = −0.100, 95% CRI: −0.191 to −0.016) despite shifts in behavior, mirroring long‐term declines in the abundance ofC. subspathacea(β = −0.191, 95% CRI: −0.355 to −0.032). These results have important implications for individual fitness and population viability, where shifts in gosling behavior putatively fail to mitigate long‐term declines in forage availability.

     
    more » « less
  5. Abstract

    Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable design parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy.

     
    more » « less