- Award ID(s):
- 1847398
- NSF-PAR ID:
- 10234884
- Date Published:
- Journal Name:
- Climate Dynamics
- ISSN:
- 0930-7575
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Frequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an air-mass intrusion carrying air pollutants from northern Eurasia. The two-day intrusion, caused drastic changes in the aerosol size distribution, chemical composition and particle hygroscopicity. Here we show how the intrusion transformed the Arctic from a remote low-particle environment to an area comparable to a central-European urban setting. Additionally, the intrusion resulted in an explosive increase in cloud condensation nuclei, which can have direct effects on Arctic clouds’ radiation, their precipitation patterns, and their lifetime. Thus, unless prompt actions to significantly reduce emissions in the source regions are taken, such intrusion events are expected to continue to affect the Arctic climate.more » « less
-
Abstract The rapid Arctic sea ice retreat in the early 21stcentury is believed to be driven by several dynamic and thermodynamic feedbacks, such as ice-albedo feedback and water vapor feedback. However, the role of clouds in these feedbacks remains unclear since the causality between clouds and these processes is complex. Here, we use NASA CERES satellite products and NCAR CESM model simulations to suggest that summertime low clouds have played an important role in driving sea ice melt by amplifying the adiabatic warming induced by a stronger anticyclonic circulation aloft. The upper-level high pressure regulates low clouds through stronger downward motion and increasing lower troposphere relative humidity. The increased low clouds favor more sea ice melt via emitting stronger longwave radiation. Then decreased surface albedo triggers a positive ice-albedo feedback, which further enhances sea ice melt. Considering the importance of summertime low clouds, accurate simulation of this process is a prerequisite for climate models to produce reliable future projections of Arctic sea ice.
-
Abstract The Northern Hemisphere (NH) has experienced winter Arctic warming and continental cooling in recent decades, but the dominant patterns in winter surface air temperature (SAT) are not well understood. Here, a self-organizing map (SOM) analysis is performed to identify the leading patterns in winter daily SAT fields from 1979 to 2018, and their associated atmospheric and ocean conditions are also examined. Three distinct winter SAT patterns with two phases of nearly opposite signs and a time scale of 7–12 days are found: one pattern exhibits concurrent SAT anomalies of the same sign over North America (NA) and northern Eurasia, while the other two patterns show SAT anomalies of opposite signs between, respectively, NA and the Bering Sea, and the Kara Sea and East Asia (EA). Winter SAT variations may arise from changes in the SOM frequencies. Specifically, the observed increasing trends of winter cold extremes over NA, central Eurasia, and EA during 1998–2013 can be understood as a result of the increasing occurrences of some specific SAT patterns. These SOMs are closely related to poleward advection of midlatitude warm air and equatorward movements of polar cold airmass. These meridional displacements of cold and warm airmasses cause concurrent anomalies over different regions not only in SAT but also in water vapor and surface downward longwave radiation. Anomalous sea surface temperatures in the tropical Pacific, midlatitude North Pacific, and North Atlantic and anomalous Arctic sea ice concentrations also concur to support and maintain the anomalous atmospheric circulation that causes the SAT anomalies.more » « less
-
null (Ed.)Abstract The wintertime (December–February) 1990–2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high-dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale of about 10 days and having about 85% of its variance coming from intraseasonal time scales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay, and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.more » « less
-
Abstract In recent decades, the Barents Sea has warmed more than twice as fast as the rest of the Arctic in winter, but the exact causes behind this amplified warming remain unclear. In this study, we quantify the wintertime Barents Sea warming (BSW, for near-surface air temperature) with an average linear trend of 1.74 °C decade −1 and an interdecadal change around 2003 based on a surface energy budget analysis using the ERA5 reanalysis dataset from 1979–2019. Our analysis suggests that the interdecadal change in the wintertime near-surface air temperature is dominated by enhanced clear-sky downward longwave radiation (CDLW) associated with increased total column water vapor. Furthermore, it is found that a mode of atmospheric variability over the North Atlantic region known as the Barents oscillation (BO) strongly contributed to the BSW with a stepwise jump in 2003. Since 2003, the BO turned into a strengthened and positive phase, characteristic of anomalous high pressure over the North Atlantic and South of the Barents Sea, which promoted two branches of heat and moisture transport from southern Greenland along the Norwegian Sea and from the Eurasian continent to the Barents Sea. This enhanced the water vapor convergence over the Barents Sea, resulting in BSW through enhanced CDLW. Our results highlight the atmospheric circulation related to the BO as an emerging driver of the wintertime BSW through enhanced meridional atmospheric heat and moisture transport over the North Atlantic Ocean.more » « less