Tensor-based methods have shown promise in improving upon traditional matrix factorization methods for recommender systems. But tensors may achieve improved recommendation quality while worsening the fairness of the recommendations. Hence, we propose a novel fairness-aware tensor recommendation framework that is designed to maintain quality while dramatically improving fairness. Four key aspects of the proposed framework are: (i) a new sensitive latent factor matrix for isolating sensitive features; (ii) a sensitive information regularizer that extracts sensitive information which can taint other latent factors; (iii) an effective algorithm to solve the proposed optimization model; and (iv) extension to multi-feature and multi-category cases which previous efforts have not addressed. Extensive experiments on real-world and synthetic datasets show that the framework enhances recommendation fairness while preserving recommendation quality in comparison with state-of-the-art alternatives.
more »
« less
Dynamic Tensor Recommender Systems
Recommender systems have been extensively used by the entertainment industry, business marketing and the biomedical industry. In addition to its capacity of providing preference-based recommendations as an unsupervised learning methodology, it has been also proven useful in sales forecasting, product introduction and other production related businesses. Since some consumers and companies need a recommendation or prediction for future budget, labor and supply chain coordination, dynamic recommender systems for precise forecasting have become extremely necessary. In this article, we propose a new recommendation method, namely the dynamic tensor recommender system (DTRS), which aims particularly at forecasting future recommendation. The proposed method utilizes a tensor-valued function of time to integrate time and contextual information, and creates a time-varying coefficient model for temporal tensor factorization through a polynomial spline approximation. Major advantages of the proposed method include competitive future recommendation predictions and effective prediction interval estimations. In theory, we establish the convergence rate of the proposed tensor factorization and asymptotic normality of the spline coefficient estimator. The proposed method is applied to simulations, IRI marketing data and Last.fm data. Numerical studies demonstrate that the proposed method outperforms existing methods in terms of future time forecasting.
more »
« less
- Award ID(s):
- 1952406
- PAR ID:
- 10236470
- Editor(s):
- Anandkumar, Animashree
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 22
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1-35
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Streaming tensor factorization is a powerful tool for processing high-volume and multi-way temporal data in Internet networks, recommender systems and image/video data analysis. Existing streaming tensor factorization algorithms rely on least-squares data fitting and they do not possess a mechanism for tensor rank determination. This leaves them susceptible to outliers and vulnerable to over-fitting. This paper presents a Bayesian robust streaming tensor factorization model to identify sparse outliers, automatically determine the underlying tensor rank and accurately fit low-rank structure. We implement our model in Matlab and compare it with existing algorithms on tensor datasets generated from dynamic MRI and Internet traffic.more » « less
-
null (Ed.)Collaborative filtering has been widely used in recommender systems. Existing work has primarily focused on improving the prediction accuracy mainly via either building refined models or incorporating additional side information, yet has largely ignored the inherent distribution of the input rating data. In this paper, we propose a data debugging framework to identify overly personalized ratings whose existence degrades the performance of a given collaborative filtering model. The key idea of the proposed approach is to search for a small set of ratings whose editing (e.g., modification or deletion) would near-optimally improve the recommendation accuracy of a validation set. Experimental results demonstrate that the proposed approach can significantly improve the recommendation accuracy. Furthermore, we observe that the identified ratings significantly deviate from the average ratings of the corresponding items, and the proposed approach tends to modify them towards the average. This result sheds light on the design of future recommender systems in terms of balancing between the overall accuracy and personalization.more » « less
-
Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance the tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.more » « less
-
User preferences are usually dynamic in real-world recommender systems, and a user’s historical behavior records may not be equally important when predicting his/her future interests. Existing recommendation algorithms – including both shallow and deep approaches – usually embed a user’s historical records into a single latent vector/representation, which may have lost the per item- or feature-level correlations between a user’s historical records and future interests. In this paper, we aim to express, store, and manipulate users’ historical records in a more explicit, dynamic, and effective manner. To do so, we introduce the memory mechanism to recommender systems. Specifically, we design a memory-augmented neural network (MANN) integrated with the insights of collaborative filtering for recommendation. By leveraging the external memory matrix in MANN, we store and update users’ historical records explicitly, which enhances the expressiveness of the model. We further adapt our framework to both item- and feature-level versions, and design the corresponding memory reading/writing operations according to the nature of personalized recommendation scenarios. Compared with state-of-the-art methods that consider users’ sequential behavior for recommendation, e.g., sequential recommenders with recurrent neural networks (RNN) or Markov chains, our method achieves significantly and consistently better performance on four real-world datasets. Moreover, experimental analyses show that our method is able to extract the intuitive patterns of how users’ future actions are affected by previous behaviors.more » « less
An official website of the United States government

