skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electroblotting through a tryptic membrane for LC-MS/MS analysis of proteins separated in electrophoretic gels
Digestion of proteins separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) remains a popular method for protein identification using mass-spectrometry based proteomics. Although robust and routine, the in-gel digestion procedure is laborious and time-consuming. Electroblotting to a capture membrane prior to digestion reduces preparation steps but requires on-membrane digestion that yields fewer peptides than in-gel digestion. This paper develops direct electroblotting through a trypsin-containing membrane to a capture membrane to simplify extraction and digestion of proteins separated by SDS-PAGE. Subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) identifies the extracted peptides. Analysis of peptides from different capture membrane pieces shows that electrodigestion does not greatly disturb the spatial resolution of a standard protein mixture separated by SDS-PAGE. Electrodigestion of an Escherichia coli ( E. coli ) cell lysate requires four hours of total sample preparation and results in only 13% fewer protein identifications than in-gel digestion, which can take 24 h. Compared to simple electroblotting and protein digestion on a poly(vinylidene difluoride) (PVDF) capture membrane, adding a trypsin membrane to the electroblot increases the number of protein identifications by 22%. Additionally, electrodigestion experiments using capture membranes coated with polyelectrolyte layers identify a higher fraction of small proteolytic peptides than capture on PVDF or in-gel digestion.  more » « less
Award ID(s):
1903967
PAR ID:
10237332
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
145
Issue:
23
ISSN:
0003-2654
Page Range / eLocation ID:
7724 to 7735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mass spectrometry (MS)‐based top‐down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post‐translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high‐resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS‐PAGE‐based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI‐MS) with capillary zone electrophoresis (CZE)‐MS/MS for high‐resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS‐PAGE gel and follow‐up cleanup as well as CZE‐MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high‐resolution separation and characterization of histone proteoforms. SDS‐PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high‐resolution separations of SDS‐PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems. 
    more » « less
  2. Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) identify proteoforms without pretreatment of enzyme proteolysis. A universal sample preparation method that can efficiently extract protein, reduce sample loss, maintain protein solubility, and be compatible with following up liquid-phase separation, MS, and tandem MS (MS/MS) is vital for large-scale proteoform characterization. Membrane ultrafiltration (MU) was employed here for buffer exchange to efficiently remove the sodium dodecyl sulfate (SDS) detergent in protein samples used for protein extraction and solubilization, followed by capillary zone electrophoresis (CZE)-MS/MS analysis. The MU method showed good protein recovery, minimum protein bias, and nice compatibility with CZE-MS/MS. Single-shot CZE-MS/MS analysis of an Escherichia coli sample prepared by the MU method identified over 800 proteoforms. 
    more » « less
  3. This research employs pepsin-containing membranes to digest proteins online after a capillary electrophoresis (CE) separation and prior to tandem mass spectrometry. Proteolysis after the separation allows the peptides from a given protein to enter the mass spectrometer in a single plug. Thus, migration time can serve as an additional criterion for confirming the identification of a peptide. The membrane resides in a sheath-flow electrospray ionization (ESI) source to enable digestion immediately before spray into the mass spectrometer, thus limiting separation of the digested peptides. Using the same membrane, digestion occurred reproducibly during 20 consecutive CE analyses performed over a 10 h period. Additionally, after separating a mixture of six unreduced proteins with CE, online digestion facilitated protein identification with at least 2 identifiable peptides for all the proteins. Sequence coverages were >75% for myoglobin and carbonic anhydrase II but much lower for proteins containing disulfide bonds. Development of methods for efficient separation of reduced proteins or identification of cross-linked peptides should enhance sequence coverages for proteins with disulfide bonds. Migration times for the peptides identified from a specific protein differed by <∼30 s, which allows for rejection of some spurious peptide identifications. 
    more » « less
  4. null (Ed.)
    Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated that Mms13 is a critical protein within the MM. Mms13 can be isolated from the MM fraction of Magnetospirillum magneticum AMB-1 and a Mms13 homolog, MamC, has been shown to control the size and shape of magnetite nanocrystals synthesized in-vitro. The objective of this study was to use several independent methods to definitively determine the localization of native Mms13 in M. magneticum AMB-1. Using Mms13-immunogold labeling and transmission electron microscopy (TEM), we found that Mms13 is localized to the magnetosome chain of M. magneticum AMB-1 cells. Mms13 was detected in direct contact with magnetite crystals or within the MM. Immunofluorescence detection of Mms13 in M. magneticum AMB-1 cells by confocal laser scanning microscopy (CLSM) showed Mms13 localization along the length of the magnetosome chain. Proteins contained within the MM were resolved by SDS-PAGE for Western blot analysis and LC-MS/MS (liquid chromatography with tandem mass spectrometry) protein sequencing. Using Anti-Mms13 antibody, a protein band with a molecular mass of ~14 kDa was detected in the MM fraction only. This polypeptide was digested with trypsin, sequenced by LC-MS/MS and identified as magnetosome protein Mms13. Peptides corresponding to the protein’s putative MM domain and catalytic domain were both identified by LC-MS/MS. Our results (Immunogold TEM, Immunofluorescence CLSM, Western blot, LC-MS/MS), combined with results from previous studies, demonstrate that Mms13 and homolog proteins MamC and Mam12, are localized to the magnetosome chain in MTB belonging to the class Alphaproteobacteria. Because of their shared localization in the MM and highly conserved amino acid sequences, it is likely that MamC, Mam12, and Mms13 share similar roles in the biomineralization of Fe3O4 nanocrystals. 
    more » « less
  5. Abstract Data-Independent Acquisition (DIA) is a method to improve consistent identification and precise quantitation of peptides and proteins by mass spectrometry (MS). The targeted data analysis strategy in DIA relies on spectral assay libraries that are generally derived from a priori measurements of peptides for each species. Although Escherichia coli ( E. coli ) is among the best studied model organisms, so far there is no spectral assay library for the bacterium publicly available. Here, we generated a spectral assay library for 4,014 of the 4,389 annotated E. coli proteins using one- and two-dimensional fractionated samples, and ion mobility separation enabling deep proteome coverage. We demonstrate the utility of this high-quality library with robustness in quantitation of the E. coli proteome and with rapid-chromatography to enhance throughput by targeted DIA-MS. The spectral assay library supports the detection and quantification of 91.5% of all E. coli proteins at high-confidence with 56,182 proteotypic peptides, making it a valuable resource for the scientific community. Data and spectral libraries are available via ProteomeXchange (PXD020761, PXD020785) and SWATHAtlas (SAL00222-28). 
    more » « less