skip to main content


Title: Phosphate Elimination and Recovery Lightweight (PEARL) membrane: A sustainable environmental remediation approach

Aqueous phosphate pollution can dramatically impact ecosystems, introducing a variety of environmental, economic, and public health problems. While novel remediation tactics based on nanoparticle binding have shown considerable promise in nutrient recovery from water, they are challenging to deploy at scale. To bridge the gap between the laboratory-scale nature of these nanostructure solutions and the practical benchmarks for deploying an environmental remediation tool, we have developed a nanocomposite material. Here, an economical, readily available, porous substrate is dip coated using scalable, water-based processes with a slurry of nanostructures. These nanomaterials have tailored affinity for specific adsorption of pollutants. Our Phosphate Elimination and Recovery Lightweight (PEARL) membrane can selectively sequester up to 99% of phosphate ions from polluted waters at environmentally relevant concentrations. Moreover, mild tuning of pH promotes at will adsorption and desorption of nutrients. This timed release allows for phosphate recovery and reuse of the PEARL membrane repeatedly for numerous cycles. We combine correlative microscopy and spectroscopy techniques to characterize the complex microstructure of the PEARL membrane and to unravel the mechanism of phosphate sorption. More broadly, through the example of phosphate pollution, this work describes a platform membrane approach based on nanostructures with specific affinity coated on a porous structure. Such a strategy can be tuned to address other environmental remediation challenges through the incorporation of other nanomaterials.

 
more » « less
Award ID(s):
1929356
NSF-PAR ID:
10237469
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
23
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2102583118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of heavy metals in our water supply poses an immense global public health burden. Heavy metal consumption is tied to increased mortality and a wide range of insidious health outcomes. In recent years, great strides have been made toward nanotechnological approaches for environmental problems, specifically the design of adsorbents to detoxify water, as well as for a related challenge of recovering valuable metals at low concentrations. However, applying nanomaterials at scale and differentiating which nanomaterials are best suited for particular applications can be challenging. Here, we report a methodology for loading nanomaterial coatings onto adsorbent membranes, testing different coatings against one another, and leveraging these materials under a variety of conditions. Our tailored coating for lead remediation, made from manganese-doped goethite nanoparticles, can filter lead from contaminated water to below detectable levels when coated onto a cellulose membrane, and the coated membrane can be recovered and reused for multiple cycles through mild tuning of pH. The Nano-SCHeMe methodology demonstrates a platform approach for effectively deploying nanomaterials for environmental applications and for direct and fair comparisons among these nanomaterials. Moreover, this approach is flexible and expansive in that our coatings have the potential to be applied to a range of sorbents. 
    more » « less
  2. null (Ed.)
    Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg g −1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water. 
    more » « less
  3. Abstract

    Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task‐specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.

     
    more » « less
  4. Abstract

    Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task‐specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.

     
    more » « less
  5. null (Ed.)
    Graphene-based 3D macroscopic aerogels with their hierarchical porous structures and mechanical strength have been widely explored for removing contaminants from water. However, their large-scale manufacturing and application in various water treatment processes are limited by their scalability. In this study, we report a proof-of-concept direct ink writing (DIW) 3D printing technique and subsequent freeze-drying to prepare graphene-biopolymer aerogels for water treatment. To provide appropriate rheology for DIW printability, two bio-inspired polymers, polydopamine (PDA) and bovine serum albumin (BSA), were added to the graphene-based ink. The biopolymers also contributed to the contaminant removal capacity of the resultant graphene-polydopamine-bovine serum albumin (G-PDA-BSA) aerogel. The physicochemical properties of the aerogel were thoroughly characterized from the nano- to macroscale. The 3D printed aerogel exhibited excellent water contaminant removal performance for heavy metals (Cr( vi ), Pb( ii )), organic dyes (cationic methylene blue and anionic Evans blue), and organic solvents ( n -hexane, n -heptane, and toluene) in batch adsorption studies. The electrostatic interaction dominated the removal of heavy metals and dyes while the hydrophobic interaction dominated the removal of organic solvents from water. Moreover, the aerogel showed superb regeneration and reuse potential. The aerogel removed 100% organic solvents over 10 cycles of regeneration and reuse; additionally, the removal efficiencies for methylene blue decreased by 2–20% after the third cycle. The fit-for-design 3D printed aerogel was also effectively used as a bottle-cap flow-through filter for dye removal. The potential and vision of the 3D printing approach for graphene-based water treatment presented here can be extended to other functional nanomaterials, can enable shape-specific applications of fit-for-purpose adsorbents/reactors and point-of-use filters, and can materialize the large-scale manufacturing of nano-enabled water treatment devices and technologies. 
    more » « less