skip to main content

Title: Should Sea-Ice Modeling Tools Designed for Climate Research Be Used for Short-Term Forecasting?
Abstract In theory, the same sea-ice models could be used for both research and operations, but in practice, differences in scientific and software requirements and computational and human resources complicate the matter. Although sea-ice modeling tools developed for climate studies and other research applications produce output of interest to operational forecast users, such as ice motion, convergence, and internal ice pressure, the relevant spatial and temporal scales may not be sufficiently resolved. For instance, sea-ice research codes are typically run with horizontal resolution of more than 3 km, while mariners need information on scales less than 300 m. Certain sea-ice processes and coupled feedbacks that are critical to simulating the Earth system may not be relevant on these scales; and therefore, the most important model upgrades for improving sea-ice predictions might be made in the atmosphere and ocean components of coupled models or in their coupling mechanisms, rather than in the sea-ice model itself. This paper discusses some of the challenges in applying sea-ice modeling tools developed for research purposes for operational forecasting on short time scales, and highlights promising new directions in sea-ice modeling.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Current Climate Change Reports
Page Range or eLocation-ID:
121 to 136
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic amplification (AA) is a coupled atmosphere-sea ice-ocean process. This understanding has evolved from the early concept of AA, as a consequence of snow-ice line progressions, through more than a century of research that has clarified the relevant processes and driving mechanisms of AA. The predictions made by early modeling studies, namely the fall/winter maximum, bottom-heavy structure, the prominence of surface albedo feedback, and the importance of stable stratification have withstood the scrutiny of multi-decadal observations and more complex models. Yet, the uncertainty in Arctic climate projections is larger than in any other region of the planet, making the assessment of high-impact, near-term regional changes difficult or impossible. Reducing this large spread in Arctic climate projections requires a quantitative process understanding. This manuscript aims to build such an understanding by synthesizing current knowledge of AA and to produce a set of recommendations to guide future research. It briefly reviews the history of AA science, summarizes observed Arctic changes, discusses modeling approaches and feedback diagnostics, and assesses the current understanding of the most relevant feedbacks to AA. These sections culminate in a conceptual model of the fundamental physical mechanisms causing AA and a collection of recommendations to accelerate progress towards reducedmore »uncertainty in Arctic climate projections. Our conceptual model highlights the need to account for local feedback and remote process interactions within the context of the annual cycle to constrain projected AA. We recommend raising the priority of Arctic climate sensitivity research, improving the accuracy of Arctic surface energy budget observations, rethinking climate feedback definitions, coordinating new model experiments and intercomparisons, and further investigating the role of episodic variability in AA.« less
  2. Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration andmore »sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales.« less
  3. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summermore »than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.« less
  4. Impacts of a warming climate are amplified in the Arctic. One notorious impact is recent and record-breaking summertime sea-ice loss. Expanding areas of open water and a prolonged ice-free season create opportunity for some industries but challenge indigenous peoples relying on sea ice for transportation and access to food. The observed and projected increase of Arctic maritime activity requires accurate sea-ice forecasts to protect life, environment, and property. Motivated by emerging prediction needs on the operational timescale (≤10 days), this study explores where local indigenous knowledge (LIK) fits into the forecaster toolbox and how it can be woven into useful sea-ice information products. The 2011 spring ice retreat season in the Bering Sea is presented as a forecasting case study. LIK, housed in a database of community-based ice and weather logs, and an ice-ocean forecast model developed by the US Navy are analyzed for their ability to provide information relevant to stakeholder needs. Additionally, metrics for verifying numerical sea-ice forecasts on multiple scales are derived. The model exhibits skill relative to persistence and climatology on the regional scale. At the community scale, we discuss how LIK and new model guidance can enhance public sea-ice information resources.
  5. Abstract

    Forecasting Antarctic atmospheric, oceanic, and sea ice conditions on subseasonal to seasonal scales remains a major challenge. During both the freezing and melting seasons current operational ensemble forecasting systems show a systematic overestimation of the Antarctic sea-ice edge location. The skill of sea ice cover prediction is closely related to the accuracy of cloud representation in models, as the two are strongly coupled by cloud radiative forcing. In particular, surface downward longwave radiation (DLW) deficits appear to be a common shortcoming in atmospheric models over the Southern Ocean. For example, a recent comparison of ECMWF reanalysis 5th generation (ERA5) global reanalysis with the observations from McMurdo Station revealed a year-round deficit in DLW of approximately 50 Wm−2in marine air masses due to model shortages in supercooled cloud liquid water. A comparison with the surface DLW radiation observations from the Ocean Observatories Initiative mooring in the South Pacific at 54.08° S, 89.67° W, for the time period January 2016–November 2018, confirms approximately 20 Wm−2deficit in DLW in ERA5 well north of the sea-ice edge. Using a regional ocean model, we show that when DLW is artificially increased by 50 Wm−2in the simulation driven by ERA5 atmospheric forcing, the predicted seamore »ice growth agrees much better with the observations. A wide variety of sensitivity tests show that the anomalously large, predicted sea-ice extent is not due to limitations in the ocean model and that by implication the cause resides with the atmospheric forcing.

    « less