skip to main content


Title: S N Ar Reaction Toward the Synthesis of Fluorinated Quinolino[2,3,4‐at]porphyrins
Abstract

An intramolecular SNAr displacement of oneo‐fluorine atom of ameso‐pentafluorophenyl‐substituted porphyrin metal complex by a neighboring β‐amino functionality generated the correspondingmeso‐fluorophenyl‐substituted metallo‐quinolino[2,3,4‐at]porphyrins that are not accessible using established quinoline‐annulation methodologies. The Cu(II), Ni(II), and Zn(II) complexes were thus prepared. The parent free base quinolino[2,3,4‐at]porphyrin is accessible only by demetallation of the copper or zinc complexes. A strong through‐space NMR‐spectroscopic coupling between the remainingo‐fluorine atoms on the annulatedmeso‐aryl group and the β‐hydrogen atom on the adjacent pyrrole moiety provide a clear spectroscopic signature for the annulation. Quinoline‐annulation alters the optical properties significantly. On account of the presence of the β‐amino functionality, all quinoline‐annulated porphyrins show strong halochromic responses with Brønsted acids and bases, the prerequisite for their potential use in chemosensing applications.

 
more » « less
Award ID(s):
1800361
NSF-PAR ID:
10238454
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
2021
Issue:
2
ISSN:
1434-193X
Page Range / eLocation ID:
p. 318-323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A series ofmeso‐substituted with aromatic (=tolyl, pyrenyl, fluorenyl, naphthyl, and triphenylamine) substituents, platinum (Pt), and palladium (Pd) porphyrins have been synthesized and characterized by spectroscopic and single‐crystal X‐ray diffraction studies to probe structure‐reactivity aspects on the electrochemical redox potentials, and phosphorescence quantum yields and lifetimes. In the X‐ray structures, the aromaticmeso‐substituents were rotated to some extent from the planarity of the porphyrin ring to minimize steric hindrance. Both Pt and Pd porphyrins revealed higher electrochemical redox gaps as compared to their free‐base porphyrin analogs as a result of the harder oxidation and reduction processes. The ability of both Pt and Pd porphyrins to generate singlet oxygen was probed by monitoring the photoluminescence of1O2at 1270 nm. Higher quantum yields for both triplet sensitizers compared to their free‐base analogs were witnessed. Singlet oxygen quantum yields close to unity were possible to achieve in the case of Pt and Pd porphyrins bearing triphenylamine substituents at themeso‐position. The present study brings out the importance of differentmeso‐substituents on the triplet porphyrin sensitizers in governing singlet oxygen quantum yields; a key property of photosensitizers needed for photodynamic therapy, chemical synthesis, and other pertinent applications.

     
    more » « less
  2. The platinum(II) complexes of known quinoline-annulated porphyrins were prepared and spectroscopically characterized. Their optical properties (UV-vis absorption and phosphorescence spectra and phosphorescence lifetimes) were recorded and contrasted against their 2,3-dioxoporphyrin precursor platinum(II) complex. The absorbance and emission spectra (in EtOH glass at 77 K) of the quinoline-annulated porphyrins fall within the NIR optical window of tissue, ranging, depending on the derivative, between [Formula: see text]950 and 1200 nm. The much red-shifted optical spectra, when compared to their non-quinoline-annulated precursors, are attributed to the [Formula: see text]-extension and conformational non-planarity that the annulation causes. The emission yields of the mono-quinoline-annulated derivatives are too low and their lifetimes too short to be practical emitters, but the bis-annulated derivative possesses a practical lifetime and emission yield, suggesting its further exploration, particularly since the methodology toward the solubilization of the quinoline-annulated porphyrins in biological media through derivatization is known. 
    more » « less
  3. Abstract

    Two water‐soluble zinc(II) phthalocyanines substituted with two or four permethylatedβ‐cyclodextrin (β‐CD) moieties at theαpositions have been utilized as building blocks for the construction of artificial photosynthetic models in water. The hydrophilic and bulkyβ‐CD moieties not only can increase the water solubility of the phthalocyanine core and prevent its stacking in water but can also bind with a tetrasulfonated zinc(II) porphyrin (ZnTPPS) and/or sodium 2‐anthraquinonesulfonate (AQ) in water through host–guest interactions. The binding interactions of these species have been studied spectroscopically, while the photoinduced processes of the resulting complexes have been investigated using steady‐state and time‐resolved spectroscopic methods. In the ternary complexes, the ZnTPPS units serve as light‐harvesting antennas to capture the light energy and transfer it to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is subsequently quenched by the electron‐deficient AQ units through electron transfer. Femtosecond transient absorption spectroscopy provides clear evidence for the singlet‐singlet energy transfer from the photo‐excited ZnTPPS to the phthalocyanine core with a rate constant (kENT) in the order of 109 s−1. The population of phthalocyanine radical cations indicates the occurrence of electron transfer from the excited phthalocyanine to the AQ moieties, forming a charge‐separated state.

     
    more » « less
  4. null (Ed.)
    meso-Phenyl- and meso-pentafluorophenyl-porpholactones, their metal complexes, as well as porphyrinoids directly derived from them are useful in a number of technical and biomedical applications, and more uses are expected to be discovered. About a dozen competing and complementary pathways toward their synthesis were reported. The suitability of the methods changes with the meso-aryl group and whether the free base or metal derivatives are sought. These circumstances make it hard for anyone outside of the field of synthetic porphyrin chemistry to ascertain which pathway is the best to produce which specific derivative. We report here on what we experimentally evaluated to be the most efficient pathways to generate the six key compounds from the commercially available porphyrins, meso-tetraphenylporphyrin (TPP) and meso-tetrakis(pentafluorophenyl)porphyrin (TFPP): free base meso-tetraphenylporpholactone (TPL) and meso-tetrakis(pentafluorophenyl)porpholactone (TFPL), and their platinum(II) and zinc(II) complexes TPLPt, TFPLPt, TPLZn, and TFPLZn, respectively. Detailed procedures are provided to make these intriguing molecules more readily available for their further study. 
    more » « less
  5. Abstract

    Oxoiron(IV) units are often implicated as intermediates in the catalytic cycles of non‐heme iron oxygenases and oxidases. The most reactive synthetic analogues of these intermediates are supported by tetradentate tripodal ligands withN‐methylbenzimidazole or quinoline donors, but their instability precludes structural characterization. Herein we report crystal structures of two [FeIV(O)(L)]2+complexes supported by pentadentate ligands incorporating these heterocycles, which show longer average Fe–N distances than the complex with only pyridine donors. These longer distances correlate linearly with log k2′ values for O‐ and H‐atom transfer rates, suggesting that weakening the ligand field increases the electrophilicity of the Fe=O center. The sterically bulkier quinoline donors are also found to tilt the Fe=O unit away from a linear N‐Fe=O arrangement by 10°.

     
    more » « less