skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Last Glacial Maximum (LGM) climate forcing and ocean dynamical feedback and their implications for estimating climate sensitivity
Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation.  more » « less
Award ID(s):
2002397
PAR ID:
10244182
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Climate of the Past
Volume:
17
Issue:
1
ISSN:
1814-9332
Page Range / eLocation ID:
253 to 267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Past climate states hold valuable insights into future climate change. Among those states, mid-Pliocene (3.3 - 3.0 Ma) is often studied as an important analog to near future climate change following an intermediate warming pathway. This time interval featured topography and geography like present-day, yet with retreated polar ice sheets and expanded boreal forests, potentially reflecting equilibrium earth system responses to CO2 forcing at a centennial to millennial time scale. Despite the prolific research on Pliocene climate, little is known about the amount of radiative forcing, especially from changing boundary conditions, that drives the Pliocene climate. Existing constraints mainly focused on well-mixed greenhouse gases and aerosols. Here, we applied the methodology commonly used to quantify radiative forcing of future climate and its sources to constrain radiative forcing of the mid-Pliocene climate using three generations of Community Earth System Models (CCSM4, CESM1.2, and CESM2). To calculate ERF, the difference in net top of the atmosphere radiative fluxes is computed between a pre-industrial control and a mid-Pliocene simulation. Both are carried out with prescribed pre-industrial sea surface temperature. The three mid-Pliocene simulations separately feature a 400 ppm CO2 (the level of mid-Pliocene), mid-Pliocene geography and topography, and mid-Pliocene ice and vegetation. Changing atmospheric temperature, water vapor, surface albedo, and clear vs total sky radiative fluxes are further extracted from these simulations to calculate radiative adjustments with published radiative kernels for CESM. In our preliminary results with CESM1.2, we found that ERF is 1.754 W m-2 for CO2 forcings, 1.143 W m-2 for vegetation and ice sheet forcing, and -0.339 W m-2 for geographic and topographic forcing. Further, ERF from boundary condition changes mostly arises from changing surface albedo with 1.626 W m-2 for vegetation and ice sheet changes and –0.54 W m-2 for geographic and topographic changes respectively. Radiative adjustments from water vapor responses tend to amplify the instantaneous forcing with the most profound effect induced by vegetation and ice sheet changes. These results underscore the importance of constraining radiative forcing from changes in boundary conditions, which is potentially key to understanding drivers of past climate warmth and inter-model spread in simulated past climate states. 
    more » « less
  2. Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared to recent assessments. 
    more » « less
  3. null (Ed.)
    Abstract Cloud radiative feedbacks are disabled via “cloud-locking” in the Community Earth System Model, version 1.2 (CESM1.2), to result in a shift in El Niño–Southern Oscillation (ENSO) periodicity from 2–7 years to decadal time scales. We hypothesize that cloud radiative feedbacks may impact the periodicity in three ways: by 1) modulating heat flux locally into the equatorial Pacific subsurface through negative shortwave cloud feedback on sea surface temperature anomalies (SSTA), 2) damping the persistence of subtropical southeast Pacific SSTA such that the South Pacific meridional mode impacts the duration of ENSO events, or 3) controlling the meridional width of off-equatorial westerly winds, which impacts the periodicity of ENSO by initiating longer Rossby waves. The result of cloud-locking in CESM1.2 contrasts that of another study, which found that cloud-locking in a different global climate model led to decreased ENSO magnitude across all time scales due to a lack of positive longwave feedback on the anomalous Walker circulation. CESM1.2 contains this positive longwave feedback on the anomalous Walker circulation, but either its influence on the surface is decoupled from ocean dynamics or the feedback is only active on interannual time scales. The roles of cloud radiative feedbacks in ENSO in other global climate models are additionally considered. In particular, it is shown that one cannot predict the role of cloud radiative feedbacks in ENSO through a multimodel diagnostic analysis. Instead, they must be directly altered. 
    more » « less
  4. Abstract The Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing the time‐step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax produces a more physically consistent treatment of mixed‐phase clouds, which leads to an increase in cloud ice content and a weaker shortwave cloud feedback over mid‐to‐high latitudes and the Southern Hemisphere subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax and microphysical substepping, we have developed a paleoclimate‐calibrated CESM2 (PaleoCalibr), which simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol‐cloud interaction than CESM2. PaleoCalibr represents a physically more consistent treatment of cloud microphysics than CESM2 and is a valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future climate projection. 
    more » « less
  5. Abstract Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades. 
    more » « less