skip to main content

Title: A Community of Practice Approach to Integrating Professional Skills Training with Graduate Thesis Research
Background. It is well recognized that current graduate education is too narrowly focused on thesis research. Graduate students have a strong desire to gain skills for their future career success beyond thesis research. This obvious gap in professional skill training in current graduate study also leads to the common student perception that professional skills beyond academic knowledge should only be gained after completion of thesis research. Purpose. A new program is being developed to rigorously integrate professional skills training with thesis research. The approach is to establish learning communities of Graduates for Advancing Professional Skills (GAPS) to incorporate project management skill training from industry into academic research. The GAPS program seeks to address two fundamental education research questions: How can project management skill training be integrated with thesis research in graduate education? What is the role/value of learning communities in enhancing the training and retention of professional skills and the effectiveness of thesis research? Our proposed solution is that graduate student learning communities engaging in a blended online and classroom approach will promote learning of professional skills such as project and time management in thesis research activities. The purpose of this session is to establish the connection between project management and thesis more » research, and demonstrate the beginning progress of the GAPS program towards. Methodology/approach. The following progress is being made to establish GAPS learning communities through which to teach and practice professional skills. A website has been developed to introduce the program, recruit participants, provide information on the online modules, and survey results of participants’ current levels of knowledge and skills related to project management. A new course, “Introduction of Project Management for Thesis Research”, has been added to the course catalog and open to enrollment for students from different majors. In addition, learning modules including project charter, scheduling, communication, teamwork, critical path method, and lean concept are developed. Case studies and examples have been developed to help students learn how to utilize project management skills in their thesis research. Conclusions. The concept of integrating professional skills training with thesis research through learning communities has been demonstrated. There are multiple advantages of this approach, including efficient utilization of the current resources, and faculty buy-in. Preliminary data from the first cohort are being collected and analyzed to identify students’ needs, benefits of the program, and areas of improvement for future cohort iterations. Implications. The GAPS program will improve professional skill training for graduate students through communities of practice. This new learning model has the potential to fundamentally change the culture of graduate education. We believe the method demonstrated here can be broadly applied to different engineering majors, and even broadly to all thesis research. « less
Authors:
; ; ; ; ;
Award ID(s):
1954946
Publication Date:
NSF-PAR ID:
10245787
Journal Name:
ASEE North Midwest Section Annual Conference 2020
Page Range or eLocation-ID:
Paper ID #32158
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Project management and other professional skill training is often lacking in graduate student education, typically as a result of limited resources, lack of faculty buy-in, and narrow focus on thesis research. To address this need and with support from NSF, we are developing the Graduates for Advancing Professional Skills (GAPS) program at Iowa State University. To aid the initial development of this program, we conducted a literature review to understand the current context of the development and implementation of professional skills in higher education curricula, with specific interest in STEM fields. Purpose: The purpose of our study was to identify best practices related to implementing professional development skills into an academic curriculum. The goal was to utilize this information in the development, planning, implementation, and assessment of our GAPS program. Design: We engaged in a systematic literature review. We focused on the curricular and pedagogical approaches to implementing these skills, results of the initiatives, and methodologies used to assess their effectiveness. Results: Our literature review uncovered the “messiness” of teaching and learning of skills such as project management. There is often not one approach or definition of project management – it may change based on scope of project andmore »context. Successful implementation requires adaptability, mentorship, problem solving, creativity, and communication. Additionally, project management has been referred to as a “threshold concept” and requires a certain level of intuition that cannot necessarily be gained through traditional classroom education. Conclusions: There appears to be an agreement on the importance of implementing project management skills at the postsecondary level. Our work illustrates the difficulty associated with undertaking this endeavor and provides guidance on approaches that can make these initiatives more beneficial. Although this literature was conducted to aid in the planning for our specific project, the synthesis of the extant works can inform other faculty and industry leaders who are interested in teaching and applying project management techniques in their courses or companies.« less
  2. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less
  3. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less
  4. This paper describes the structure, project initiatives, and early results of the NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University (WCU). SPIRIT is a scholarship program focused on building an interdisciplinary engineering learning community involved in extensive peer and faculty mentoring, vertically-integrated Project Based Learning (PBL), and undergraduate research experiences. The program has provided twenty-six scholarships and academic resources to a diverse group of engineering and engineering technology students. Results from several project initiatives have been promising. Recruitment efforts have resulted in a demographically diverse group of participants whose retention rates within the program have held at 82%. A vibrant learning community has organically developed where participants are provided both academic and non-academic support across several majors and grade classes. Since May 2014, SPIRIT undergraduate research projects have resulted in forty-five presentations at seven different undergraduate and professional conferences. Twenty-seven PBL and five integrated open-ended design challenges have been completed, involving several corporate sponsors and encompassing a wide-range of engineering topics. Results from a ninety-question participant survey revealed several perceived program strengths and areas of possible improvement. Overall, the participants agreed or strongly agreed that the program had been a positivemore »experience (4.0/4.0) and had helped them to prepare for a career in engineering (3.8/4.0). Undergraduate research activities conducted through the program have helped the participants to understand the steps involved in research processes (3.8/4.0), to appreciate the need for a combination of analysis and hands-on skills (4.0/4.0), and to become more resilient toward academic challenges and obstacles (3.8/4.0). The program’s learning community helped participants build relationships with other students outside of their major (3.1/4.0) as compared to normal course communities. Several participants believed that they were more comfortable with seeking advice from upper class students within the program (3.7/4.0) as compared to upper class students outside the program (2.7/4.0). Vertically-integrated PBL activities helped participants in understanding project management techniques (3.8/4.0), teaming techniques (3.7/4.0), and to assume a leadership role on projects (3.6/4.0). Indicated areas of program improvement included the desire and need for a system of peer-review for the students’ undergraduate research papers; a perceived hindrance to benefit from “journaling” about their program experiences (3.6/4.0); and a need for continued strengthening of activities associated with graduate school application processes as well as preparations for job interviews and applications. This paper presents details of the program initiatives, a compilation of survey results with necessary discussion, and areas of possible improvement going forward.« less
  5. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at externalmore »institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities.« less