skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WideScan: Exploiting Out-of-Band Distortion for Device Classification Using Deep Learning
Wireless device classification techniques play a vital role in supporting spectrum awareness applications, such as spectrum access policy enforcement and unauthorized network access monitoring. Recent works proposed to exploit distortions in the transmitted signals caused by hardware impairments of the devices to provide device identification and classification using deep learning. As technology advances, the manufacturing impairment variations among devices become extremely insignificant, and hence the need for more sophisticated device classification techniques becomes inescapable. This paper proposes a scalable, RF data-driven deep learning-based device classification technique that efficiently classifies transmitting radios from a large pool of bit-similar, high-end, high-performance devices with same hardware, protocol, and/or software configurations. Unlike existing techniques, the novelty of the proposed approach lies in exploiting both the in-band and out-of-band distortion information, caused by inherent hardware impairments, to enable scalable and accurate device classification. Using convolutional neural network (CNN) model for classification, our results show that the proposed technique substantially outperforms conventional approaches in terms of both classification accuracy and learning times. In our experiments, the testing accuracy obtained under the proposed technique is about 96% whereas that obtained under the conventional approach is only about 50% when the devices exhibit very similar hardware impairments. The proposed technique can be implemented with minimum receiver design tuning, as radio technologies, such as cognitive radios, can easily allow for both in-band and out-of band sampling.  more » « less
Award ID(s):
2003273
PAR ID:
10245790
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE Global Communications Conference
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The accurate identification of wireless devices is critical for enabling automated network access monitoring and authenticated data communication in large-scale networks; e.g., IoT networks. RF fingerprinting has emerged as a potential solution for device identification by leveraging the transmitter unique manufacturing impairments of the RF components. Although deep learning is proven efficient in classifying devices based on the hardware impairments, trained models perform poorly due to channel variations. That is, although training and testing neural networks using data generated during the same period achieve reliable classification, testing them on data generated at different times degrades the accuracy substantially. To the best of our knowledge, we are the first to propose to leverage MIMO capabilities to mitigate the channel effect and provide a channelresilient device classification. For the proposed technique we show that, for Rayleigh channels, blind partial channel estimation enabled by MIMO increases the testing accuracy by up to 40% when the models are trained and tested over the same channel, and by up to 60% when the models are tested on a channel that is different from that used for training. 
    more » « less
  2. Deep learning-based device fingerprinting has recently been recognized as a key enabler for automated network access authentication. Its robustness to impersonation attacks due to the inherent difficulty of replicating physical features is what distinguishes it from conventional cryptographic solutions. Although device fingerprinting has shown promising performances, its sensitivity to changes in the network operating environment still poses a major limitation. This paper presents an experimental framework that aims to study and overcome the sensitivity of LoRa-enabled device fingerprinting to such changes. We first begin by describing RF datasets we collected using our LoRa-enabled wireless device testbed. We then propose a new fingerprinting technique that exploits out-of-band distortion information caused by hardware impairments to increase the fingerprinting accuracy. Finally, we experimentally study and analyze the sensitivity of LoRa RF fingerprinting to various network setting changes. Our results show that fingerprinting does relatively well when the learning models are trained and tested under the same settings. However, when trained and tested under different settings, these models exhibit moderate sensitivity to channel condition changes and severe sensitivity to protocol configuration and receiver hardware changes when IQ data is used as input. However, with FFT data is used as input, they perform poorly under any change. 
    more » « less
  3. Most prior works on deep learning-based wireless device classification using radio frequency (RF) data apply off-the-shelf deep neural network (DNN) models, which were matured mainly for domains like vision and language. However, wireless RF data possesses unique characteristics that differentiate it from these other domains. For instance, RF data encompasses intermingled time and frequency features that are dictated by the underlying hardware and protocol configurations. In addition, wireless RF communication signals exhibit cyclostationarity due to repeated patterns (PHY pilots, frame prefixes, and so on) that these signals inherently contain. In this article, we begin by explaining and showing the unsuitability as well as limitations of existing DNN feature design approaches currently proposed to be used for wireless device classification. We then present novel feature design approaches that exploit the distinct structures of RF communication signals and the spectrum emissions caused by transmitter hardware impairments to custom-make DNN models suitable for classifying wireless devices using RF signal data. Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations. We end the article by presenting other feature design strategies that have great potential for providing further performance improvements of the DNN-based wireless device classification, and discuss the open research challenges related to these proposed strategies. 
    more » « less
  4. Abstract Rapid advancements in deep learning over the past decade have fueled an insatiable demand for efficient and scalable hardware. Photonics offers a promising solution by leveraging the unique properties of light. However, conventional neural network architectures, which typically require dense programmable connections, pose several practical challenges for photonic realizations. To overcome these limitations, we propose and experimentally demonstrate Photonic Neural Cellular Automata (PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses the speed and interconnectivity of photonics, as well as the self-organizing nature of cellular automata through local interactions to achieve robust, reliable, and efficient processing. We utilize linear light interference and parametric nonlinear optics for all-optical computations in a time-multiplexed photonic network to experimentally perform self-organized image classification. We demonstrate binary (two-class) classification of images using as few as 3 programmable photonic parameters, achieving high experimental accuracy with the ability to also recognize out-of-distribution data. The proposed PNCA approach can be adapted to a wide range of existing photonic hardware and provides a compelling alternative to conventional photonic neural networks by maximizing the advantages of light-based computing whilst mitigating their practical challenges. Our results showcase the potential of PNCA in advancing photonic deep learning and highlights a path for next-generation photonic computers. 
    more » « less
  5. Abstract The incorporation of high‐performance optoelectronic devices into photonic neuromorphic processors can substantially accelerate computationally intensive matrix multiplication operations in machine learning (ML) algorithms. However, the conventional designs of individual devices and system are largely disconnected, and the system optimization is limited to the manual exploration of a small design space. Here, a device‐system end‐to‐end design methodology is reported to optimize a free‐space optical general matrix multiplication (GEMM) hardware accelerator by engineering a spatially reconfigurable array made from chalcogenide phase change materials. With a highly parallelized integrated hardware emulator with experimental information, the design of unit device to directly optimize GEMM calculation accuracy is achieved by exploring a large parameter space through reinforcement learning algorithms, including deep Q‐learning neural network, Bayesian optimization, and their cascaded approach. The algorithm‐generated physical quantities show a clear correlation between system performance metrics and device specifications. Furthermore, physics‐aware training approaches are employed to deploy optimized hardware to the tasks of image classification, materials discovery, and a closed‐loop design of optical ML accelerators. The demonstrated framework offers insights into the end‐to‐end and co‐design of optoelectronic devices and systems with reduced human supervision and domain knowledge barriers. 
    more » « less