skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A simulation‐based optimization model for infrastructure planning for electric autonomous vehicle sharing
Abstract New transportation technologies (e.g., electric autonomous vehicles [EAVs]) and operation paradigms (e.g., car sharing) are discussed, researched, and to a small degree also deployed in recent years in response to rising energy crises and aggravating traffic congestions. In this research, we present a station‐based car‐sharing service system that integrates both EAV technologies and car‐sharing operations. Based on the simulation model, a dynamic and time‐continuous optimization model seeking a near‐optimum design of charging station location and EAV deployment is developed. By discretizing the model, we proposed a Monte Carlo simulation model to evaluate the total system cost for a given location and vehicle deployment design. A heuristic approach based on the genetic algorithm is developed to solve the system design of station location and vehicle deployment. A numerical test in Yantai City, China, is conducted to illustrate the effectiveness of the proposed model and to draw managerial insights into how the key parameters affect the system design.  more » « less
Award ID(s):
1638355
PAR ID:
10245945
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
Volume:
36
Issue:
7
ISSN:
1093-9687
Page Range / eLocation ID:
p. 858-876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety. 
    more » « less
  2. null (Ed.)
    This paper presents a systematic design of high-fidelity tele-operated scaled vehicles to be used as a research and development platform for intelligent transportation technologies. Compared to computer simulation and full-scale physical tests, the use of high-fidelity scaled setups provides advantages on testing time and financial effectiveness. The physical design of the vehicles features a 1:14 scale with realistic appearance licensed by car manufacturers. Customized steering system and propulsion control provide high-fidelity maneuver characteristics. Remote control is deployed using a target-host structure over WiFi and can provide seamless switching between human driving and autonomous/assisted driving on the host side. Several possible solutions for real-time panoramic vision feedback are explored, with a tri-camera design based on parallel acquisition interfaces adopted. An adaptive color compression technique is developed to shorten the video streaming latency. A customized miniature LIDAR system is introduced to provide an ultra-small package for on-board installation. As a solution balancing between test fidelity and costs, the proposed scaled vehicles are especially suitable for validation tests during the early stage of research and development. With a long-term goal of developing a multi-vehicle traffic network test platform, ongoing and future work on the construction of scaled buildings and road systems is also discussed. 
    more » « less
  3. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  4. Understanding the preferences for new and future transportation technologies is important to ensure an efficient and equitable future transportation system. A survey was conducted of Americans’ preferences for several such technologies. Americans are concerned about vehicle range and charging station availability for electric vehicles (EVs) and hesitant about autonomous vehicle (AV) safety. Opinions about many transportation technologies, such as vertical takeoff and landing (i.e., air taxis), shared parking, and air-drone delivery are mixed. These less familiar technologies require continued tracking of preferences. A 55% increase is estimated in the probability of an individual choosing a battery electric vehicle (BEV) pickup truck if its fuel economy increases by about 9%. This result supports a market for BEV pickup trucks currently under development by many automakers. The preference for vehicle autonomation appears to depend on the use case. Driving task automation is preferred by residents of low-density, car-dependent areas where long commutes are common. In contrast, automated parking technologies are favored by those living in denser communities. Intermittent bus lanes are favored by those living in high population density areas, but not among those in areas with high shares of zero-vehicle households. These results provide indications of where to direct future research in the field. 
    more » « less
  5. This paper presents ModelMap, a model-based multi-domain application development framework for DriveOS, our in-house centralized vehicle management software system. DriveOS runs on multicore x86 machines and uses hardware virtualization to host isolated RTOS and Linux guest OS sandboxes. In this work, we design Simulink interfaces for model-based vehicle control function development across multiple sandboxed domains in DriveOS. ModelMap provides abstractions to: (1) automatically generate periodic tasks bound to threads in different OS domains, (2) establish cross-domain synchronous and asynchronous communication interfaces, and (3) handle USB-based CAN I/O in Simulink. We introduce the concept of a nested binary, for the deployment of ELF binary executable code in different sandboxed domains. We demonstrate ModelMap using a combination of synthetic benchmarks, and experiments with Simulink models of a CAN Gateway and HVAC service running on an electric car. ModelMap eases the development of applications, which are shown to achieve industry-target performance using a multicore hardware platform in DriveOS. 
    more » « less