skip to main content


Title: Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review
Phosphorus (P) loss from cropland to ground and surface waters is a global concern. In cold climates (CCs), freeze–thaw cycles, snowmelt runoff events, and seasonally wet soils increase P loss potential while limiting P removal effectiveness of riparian buffer zones (RBZs) and other practices. While RBZs can help reduce particulate P transfer to streams, attenuation of dissolved P forms is more challenging. Moreover, P transport studies often focus on either cropland or RBZs exclusively rather than spanning the natural cropland–RBZ–stream gradient, defined here as the cropland–RBZ–stream continuum. Watershed P transport models and agronomic P site indices are commonly used to identify critical source areas; however, RBZ effects on P transport are usually not included. In addition, the coarse resolution of watershed P models may not capture finer-scale soil factors affecting P mobilization. It is clear that site microtopography and hydrology are closely linked and important drivers of P release and transport in overland flow. Combining light detection and ranging (LiDAR) based digital elevation models with P site indices and process-based models show promise for mapping and modeling P transport risk in cropland-RBZ areas; however, a better mechanistic understanding of processes controlling mobile P species across regions is needed. Broader predictive approaches integrating soil hydro-biogeochemical processes with real-time hydroclimatic data and risk assessment tools also hold promise for improving P transport risk assessment in CCs.  more » « less
Award ID(s):
1757353 1654642
NSF-PAR ID:
10247274
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soil Systems
Volume:
5
Issue:
1
ISSN:
2571-8789
Page Range / eLocation ID:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfire is a natural component of sagebrush (Artemisiaspp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n= 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post‐fire period and subsequent flushing of these sediments by runoff from cold‐season hydrologic processes. Our results suggest that the interaction of aeolian and cold‐season hydrologic‐driven erosion processes is an important component for consideration in post‐fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  2. Abstract

    Rainfall runoff and leaching are the main driving forces that nitrogen, an important non‐point source (NPS) pollutant, enters streams, lakes, and groundwater. Hydrological and transport processes thus play a pivotal role in NPS nitrogen pollution. Existing hydro‐environmental models for nitrogen pollution often over‐simplify the within‐watershed processes. It is unclear how such simplification affects the pollution assessment regarding the formation and distribution of denitrification hot spots—which is important for the design of land‐based countermeasures. To study this problem, we developed a model, DHSVM‐N, and its variant, DHSVM‐N_alt. DHSVM‐N is developed by integrating nitrogen‐related processes of SWAT into a comprehensive process‐based hydrological model, the Distributed Hydrology Soil and Vegetation Model (DHSVM). DHSVM‐N includes detailed representations of nitrate transport process at a fine spatial resolution with good landscape connectivity to accommodate interactions between hydrological and biogeochemical processes along the flow travel pathways. Because of the lack of spatially distributed observational data for validation, a model‐to‐model comparison study is conducted. Through comparison studies on a representative catchment using SWAT, DHSVM‐N and DHSVM‐N_alt, we quantify the critical roles of hydrological processes and nitrate transport processes in modeling the denitrification process. That is, the capabilities to give reasonable soil moisture estimates and to account for essential processes that take place along flow pathways are keys to simulate denitrification hot spots and their spatial variation. Furthermore, DHSVM‐N results show that terrestrial denitrification from hotspots alone can reach as high as 36% of the annual stream nitrate export of the watershed.

     
    more » « less
  3. Abstract

    Efforts to reduce riverine phosphorus (P) loads have not been as fruitful as expected or hoped. One reason for the failure of these efforts appears to be that models used for watershed P management have understated and misrepresented the role of in‐stream processes in shaping watershed P export. Here, we update the latest release of the Soil and Water Assessment Tool (SWAT+), a widely used watershed management model, to better represent in‐stream P retention and remobilization (SWAT+P.R&R). We add new streambed pools where P is stored and tracked, and we incorporate three new processes driving in‐stream P dynamics: (a) deposition and resuspension of sediment‐associated P, (b) diffusion of dissolved P between the water column and streambed, and (c) adsorption and desorption of mineral P. The objective of this modeling work is to provide a diagnostic tool that enables researchers to challenge existing assumptions regarding how watersheds store, transform, and transport P. Here, in a first diagnostic analysis, SWAT+P.R&R helps reconcile in‐stream P retention theory (that P is retained at low flows and remobilized at high flows) and a discordant data set in our validation watershed. SWAT+P.R&R results (a) clarify that the theorized relationship between P retention and flow is only valid (for this point‐source affected testbed, at least) at the temporal scale of a single rising‐or‐falling hydrograph limb and (b) illustrate that hysteresis obscures the relationship at longer temporal scales. Future work using SWAT+P.R&R could further challenge assumptions regarding timescales of in‐stream P legacies and sources of P load variability.

     
    more » « less
  4. Aging water infrastructure renewal in urban areas creates opportunities to systematically implement green infrastructure (GI) systems. However, historical soil contamination from gasoline lead additives, steel manufacturing by-products, and other historical industry raise the potential that novel GI drainage patterns and geochemical environments may mobilize these legacy pollutants to green infrastructure sites previously isolated from most hydrologic flows. Characterization of GI soil chemistries across GI type to build on previous observations in other cites/regions is fundamental to accurate assessments of these emerging management scenarios and the resultant risk of increased metal exposures in downstream environments. In particular, clarification of ecosystem services this metal sequestration may provide are vital to comprehensive assessment of green infrastructure function. During 2021, soil metal chemistry, specifically, As, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn was measured at a high spatial resolution in six Pittsburgh (Pennsylvania, United States) GI installations using a portable X-ray Fluorescence Spectrometer. Patterns of trace metal accumulation were identified in these installations and evaluated as a function of site age and GI connection to road systems. Trace metals including chromium, copper, manganese, and zinc all seem to be accumulating at roadside edges. Remobilization of historically contaminated soils also seems to be a potential mechanism for transporting legacy trace metal contamination, particularly lead, into GI systems. However, metals were not clearly accumulating in installations less connected to road inputs. These findings are consistent with literature reports of trace metal transport to GI systems and reconfirm that clarification of these processes is fundamental to effective stormwater planning and management. 
    more » « less
  5. Clearcutting and other land-use changes are known to release terrestrial carbon and mobilize organic carbon into streamwater, significantly augmenting aquatic carbon levels in the short-term. However, little is known about the lasting impacts of forest management decisions on the riverine concentration levels of Dissolved Organic Carbon (DOC). Here we compare data from HJ Andrews Experimental Forest, a long-term ecological research (LTER) site located in the Oregon Cascades. We paired stream chemistry and discharge measurements spanning 15-30 years. Two watersheds that were 100\% clear-cut 40-50 years ago (WS01 and WS10) were compared with their unharvested and controlled counterparts (WS02 and WS09). Temporal analysis showed that, on average, DOC concentrations in the old-growth watersheds are notably higher than their harvested analogs to this day. This suggests even though clearcutting can release DOC from soil and vegetation to water, the terrestrial organic carbon stock is ultimately depleted post-clearcutting resulting in lower DOC concentrations. Concentration-discharge (CQ) analysis also revealed a sharp difference in behaviors between watersheds 1 and 2, with WS01 exhibiting a slight flushing pattern bordering on hysteresis while WS02 displayed a pronounced dilution pattern. Based on the shallow-deep hypothesis (Zhi et al. 2019; Zhi and Li, 2020) this indicates that the old-growth watershed has a pronounced groundwater DOC source, and clearcutting could have altered this source within WS01 and significantly lowered baseflow organic carbon concentrations. However, it should be noted that WS09 and WS10 displayed DOC behavior similar to that of WS01, which could also signify that the previously mentioned opposing CQ behaviors are a result of some underlying geological or lithological contribution unique to WS02. These competing hypotheses will be further tested using a watershed scale reactive transport model HBV-BioRT.", 
    more » « less