skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elastic symmetry with beachball pictures
The elastic map, or generalized Hooke’s Law, associates stress with strain in an elastic material. A symmetry of the elastic map is a reorientation of the material that does not change the map. We treat the topic of elastic symmetry conceptually and pictorially. The elastic map is assumed to be linear, and we study it using standard notions from linear algebra—not tensor algebra. We depict strain and stress using the “beachballs” familiar to seismologists. The elastic map, whose inputs and outputs are strains and stresses, is in turn depicted using beachballs. We are able to infer the symmetries for most elastic maps, sometimes just by inspection of their beachball depictions. Many of our results will be familiar, but our versions are simpler and more transparent than their counterparts in the literature.  more » « less
Award ID(s):
1829447
PAR ID:
10247794
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An elastic map T associates stress with strain in some material. A symmetry of T is a rotation of the material that leaves T unchanged, and the symmetry group of T consists of all such rotations. The symmetry class of T describes the symmetry group but without the orientation information. With an eye toward geophysical applications, Browaeys & Chevrot developed a theory which, for any elastic map T and for each of six symmetry classes Σ, computes the "Σ-percentage" of T. The theory also finds a "hexagonal approximation"—an approximation to T whose symmetry class is at least transverse isotropic. We reexamine their theory and recommend that the Σ-percentages be abandoned. We also recommend that the hexagonal approximations to T be replaced with the closest transverse isotropic maps to T. 
    more » « less
  2. SUMMARY Evidence of seismic anisotropy is widespread within the Earth, including from individual crystals, rocks, borehole measurements, active-source seismic data, and global seismic data. The seismic anisotropy of a material determines how wave speeds vary as a function of propagation direction and polarization, and it is characterized by density and the elastic map, which relates strain and stress in the material. Associated with the elastic map is a symmetric $$6 \times 6$$ matrix, which therefore has 21 parameters. The 21-D space of elastic maps is vast and poses challenges for both theoretical analysis and typical inverse problems. Most estimation approaches using a given set of directional wave speed measurements assume a high-symmetry approximation, typically either in the form of isotropy (2 parameters), vertical transverse isotropy (radial anisotropy: 5 parameters), or horizontal transverse isotropy (azimuthal anisotropy: 6 parameters). We offer a general approach to explore the space of elastic maps by starting with a given elastic map $$\mathbf {T}$$. Using a combined minimization and projection procedure, we calculate the closest $$\Sigma$$-maps to $$\mathbf {T}$$, where $$\Sigma$$ is one of the eight elastic symmetry classes: isotropic, cubic, transverse isotropic, trigonal, tetragonal, orthorhombic, monoclinic and trivial. We apply this approach to 21-parameter elastic maps derived from laboratory measurements of minerals; the measurements include dependencies on pressure, temperature, and composition. We also examine global elasticity models derived from subduction flow modelling. Our approach offers a different perspective on seismic anisotropy and motivates new interpretations, such as for why elasticity varies as a function of pressure, temperature, and composition. The two primary advances of this study are (1) to provide visualization of elastic maps, including along specific pathways through the space of model parameters, and (2) to offer distinct options for reducing the complexity of a given elastic map by providing a higher-symmetry approximation or a lower-anisotropic version. This could contribute to improved imaging and interpretation of Earth structure and dynamics from seismic anisotropy. 
    more » « less
  3. Abstract An elastic map $$\mathbf {T}$$ T describes the strain-stress relation at a particular point $$\mathbf {p}$$ p in some material. A symmetry of $$\mathbf {T}$$ T is a rotation of the material, about  $$\mathbf {p}$$ p , that does not change  $$\mathbf {T}$$ T . We describe two ways of inferring the group $$\mathcal {S} _{ \mathbf {T} }$$ S T of symmetries of any elastic map $$\mathbf {T}$$ T ; one way is qualitative and visual, the other is quantitative. In the first method, we associate to each $$\mathbf {T}$$ T its “monoclinic distance function” "Equation missing" on the unit sphere. The function "Equation missing" is invariant under all of the symmetries of  $$\mathbf {T}$$ T , so the group $$\mathcal {S} _{ \mathbf {T} }$$ S T is seen, approximately, in a contour plot of "Equation missing" . The second method is harder to summarize, but it complements the first by providing an algorithm to compute the symmetry group $$\mathcal {S} _{ \mathbf {T} }$$ S T . In addition to $$\mathcal {S} _{ \mathbf {T} }$$ S T , the algorithm gives a quantitative description of the overall approximate symmetry of  $$\mathbf {T}$$ T . Mathematica codes are provided for implementing both the visual and the quantitative approaches. 
    more » « less
  4. Abstract In linear elasticity, universal displacements for a given symmetry class are those displacements that can be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants in the symmetry class. In a previous work, we showed that the larger the symmetry group, the larger the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain. We show that theuniversality constraints(equilibrium equations and arbitrariness of the elastic constants) completely specify theuniversal elastic strainsfor each of the eight anisotropy symmetry classes. The corresponding universal eigenstrains are the set of solutions to a system of second-order linear PDEs that ensure compatibility of the total strains. We show that for three symmetry classes, namely triclinic, monoclinic, and trigonal, only compatible (impotent) eigenstrains are universal. For the remaining five classes universal eigenstrains (up to the impotent ones) are the set of solutions to a system of linear second-order PDEs with certain arbitrary forcing terms that depend on the symmetry class. 
    more » « less
  5. A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology. 
    more » « less