skip to main content

This content will become publicly available on December 1, 2022

Title: Engineering new limits to magnetostriction through metastability in iron-gallium alloys
Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe 1− x Ga x alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x  = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe 1− x Ga x alloy to gallium compositions as high as x  = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1− x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10 −5  s m −1 . When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Award ID(s):
2006028 1719875
Publication Date:
NSF-PAR ID:
10248152
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the magnetic and magnetostrictive behaviors of the pseudobinary ferrimagnetic spinel oxide system (1−x)CoFe2O4–xCoAl2O4 [Co(Fe1−xAlx)2O4], with one end-member being the ferrimagnetic CoFe2O4 and the other end-member being CoAl2O4 that is paramagnetic above 9.8 K. The temperature spectra of magnetization and magnetic susceptibility were employed to detect the magnetic transition temperatures and to determine the phase diagram of this system. Composition dependent and temperature dependent magnetostrictive behaviors reveal an exotic phase boundary that separates two ferrimagnetic states: At room temperature and under small magnetic fields (∼500 Oe), Fe-rich compositions exhibit negative magnetostriction while the Al-rich compositions exhibit positive magnetostriction though the values are small (<10 ppm). Moreover, the compositions around this phase boundary at room temperature (x = 0.35, 0.4, 0.45, 0.5) exhibit near-zero magnetostriction and enhanced magnetic susceptibility, which may be promising in the applications for magnetic cores, current sensors, or magnetic shielding materials.
  2. Abstract

    Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

  3. Abstract

    Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in them= 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ →  Fe3+charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.

  4. Magnetoelectric coefficient values of above 5 and 2 V cm–1 Oe–1 in 20 nm CoFe2O4–BaTiO3 and NiFe2O4–BaTiO3 core–shell magnetoelectric nanoparticles were demonstrated. These colossal values, compared to 0.1 V cm–1 Oe–1 commonly reported for the 0–3 system, are attributed to (i) the heterostructural lattice-matched interface between the magnetostrictive core and the piezoelectric shell, confirmed through transmission electron microscopy, and (ii) in situ scanning tunneling microscopy nanoprobe-based ME characterization. The nanoprobe technique allows measurements of the ME effect at a single-nanoparticle level which avoids the charge leakage problem of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information processing to nanomedicine and brain–machine interfaces.
  5. Abstract

    Actinide materials exhibit strong spin–lattice coupling and electronic correlations, and are predicted to host new emerging ground states. One example is piezomagnetism and magneto-elastic memory effect in the antiferromagnetic Mott-Hubbard insulator uranium dioxide, though its microscopic nature is under debate. Here, we report X-ray diffraction studies of oriented uranium dioxide crystals under strong pulsed magnetic fields. In the antiferromagnetic state a [888] Bragg diffraction peak follows the bulk magnetostriction that expands under magnetic fields. Upon reversal of the field the expansion turns to contraction, before the [888] peak follows the switching effect and piezomagnetic ‘butterfly’ behaviour, characteristic of two structures connected by time reversal symmetry. An unexpected splitting of the [888] peak is observed, indicating the simultaneous presence of time-reversed domains of the 3-k structure and a complex magnetic-field-induced evolution of the microstructure. These findings open the door for a microscopic understanding of the piezomagnetism and magnetic coupling across strong magneto-elastic interactions.