Abstract Compartments within living cells create specialized microenvironments, allowing for multiple reactions to be carried out simultaneously and efficiently. While some organelles are bound by a lipid bilayer, others are formed by liquid-liquid phase separation, such as P-granules and nucleoli. Synthetic minimal cells have been widely used to study many natural processes, including organelle formation. Here we describe a synthetic cell expressing RGG-GFP-RGG, a phase-separating protein derived from LAF-1 RGG domains, to form artificial membraneless organelles that can sequester RNA and reduce protein expression. We create complex microenvironments within synthetic cell cytoplasm and introduce a tool to modulate protein expression in synthetic cells. Engineering of compartments within synthetic cells furthers understanding of evolution and function of natural organelles, as well as it facilitates the creation of more complex and multifaceted synthetic life-like systems.
more »
« less
Practical considerations for generation of multi-compartment complex coacervates
We discuss preparation of experimental models for multi-compartment membraneless organelles in which distinct compositions are maintained indefinitely for macromolecule-rich phases in contact with each other. These model systems are based on the physical chemistry phenomenon of complex coacervation. In complex coacervation, liquid-liquid phase separation occurs due to ion pairing interactions between oppositely charged polyelectrolytes. This mechanism can drive the associative phase separation of proteins and nucleic acids, the major macromolecular components of membraneless organelles. Here we provide examples, advice and practical considerations for the design, generation, and analysis of multi-compartment complex coacervates. These structures are of interest to compartmentalize the interior of artificial cells and as models for the intracellular membraneless organelles of biological cells.
more »
« less
- Award ID(s):
- 1715984
- PAR ID:
- 10248403
- Editor(s):
- Christine D. Keating, volume editor
- Date Published:
- Journal Name:
- Methods in enzymology
- Volume:
- 646
- ISSN:
- 0076-6879
- Page Range / eLocation ID:
- 115-142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles.more » « less
-
Membraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler in vitro models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets. Upon addition of hydrogen peroxide “fuel”, enzyme activity localized within the droplets causes a rapid increase in the pH. Under appropriate conditions, this reaction-induced pH change triggers coacervate dissolution owing to its pH-responsive phase behavior. Notably, this destabilizing effect of the enzymatic reaction on phase separation depends on droplet size owing to the diffusive delivery and removal of reaction components. Reaction-diffusion models informed by the experimental data show that larger drops support larger changes in the local pH thereby enhancing their dissolution relative to smaller droplets. Together, these results provide a basis for achieving droplet size control based on negative feedback between pH-dependent phase separation and pH-changing enzymatic reactions.more » « less
-
Membraneless organelles are RNA–protein assemblies which have been implicated in post‐transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain‐containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that inDrosophila, different germ granule proteins associate with the multi‐domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudorin vitroand, surprisingly, partition to distinct and poorly overlapping clusters in germ granulesin vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule.more » « less
-
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.more » « less
An official website of the United States government

