skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Accuracy of Causal Learning over 24 Days
Humans often rely on past experiences stored in long-term memory to predict the outcome of an event. In traditional lab-based experiments (e.g., causal learning, probability learning, etc.), these observations are compressed into a successive series of learning trials. The rapid nature of this paradigm means that completing the task relies on working memory. In contrast, real-world events are typically spread out over longer periods of time, and therefore long-term memory must be used. We conducted a 24 day smartphone study to assess how well people can learn causal relationships in extended timeframes. Surprisingly, we found few differences in causal learning when subjects observed events in a traditional rapid series of 24 trials as opposed to one trial per day for 24 days. Specifically, subjects were able to detect causality for generative and preventive datasets and also exhibited illusory correlations in both the short-term and long-term designs. We discuss theoretical implications of this work.  more » « less
Award ID(s):
1651330
PAR ID:
10248416
Author(s) / Creator(s):
;
Editor(s):
Goel, A; Seifert, C; Freska, C
Date Published:
Journal Name:
Proceedings of Annual Conference of the Cognitive Science Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Denison, S; Mack, M; Xu, Y; null (Ed.)
    When making causal inferences, prior research shows that people are capable of controlling for alternative causes. These studies, however, utilize artificial inter-trial intervals on the order of seconds; in real-life situations people often experience data over days and weeks (e.g., learning the effectiveness of two new medications over multiple weeks). In the current study, participants learned about two possible causes from data presented in a traditional trial-by-trial paradigm (rapid series of trials) versus a more naturalistic paradigm (one trial per day for multiple weeks via smartphone). Our results suggest that while people are capable of detecting simple cause-effect relations that do not require controlling for another cause when learning over weeks, they have difficulty learning cause-effect relations that require controlling for alternative causes. 
    more » « less
  2. Gu, Yaodong (Ed.)
    Traditional gait event detection methods for heel strike and toe-off utilize thresholding with ground reaction force (GRF) or kinematic data, while recent methods tend to use neural networks. However, when subjects’ walking behaviors are significantly altered by an assistive walking device, these detection methods tend to fail. Therefore, this paper introduces a new long short-term memory (LSTM)-based model for detecting gait events in subjects walking with a pair of custom ankle exoskeletons. This new model was developed by multiplying the weighted output of two LSTM models, one with GRF data as the input and one with heel marker height as input. The gait events were found using peak detection on the final model output. Compared to other machine learning algorithms, which use roughly 8:1 training-to-testing data ratio, this new model required only a 1:79 training-to-testing data ratio. The algorithm successfully detected over 98% of events within 16ms of manually identified events, which is greater than the 65% to 98% detection rate of previous LSTM algorithms. The high robustness and low training requirements of the model makes it an excellent tool for automated gait event detection for both exoskeleton-assisted and unassisted walking of healthy human subjects. 
    more » « less
  3. Abstract We present a transformer model, named DeepHalo, to predict the occurrence of halo coronal mass ejections (CMEs). Our model takes as input an active region (AR) and a profile, where the profile contains a time series of data samples in the AR that are collected 24 hr before the beginning of a day, and predicts whether the AR would produce a halo CME during that day. Each data sample contains physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We survey and match CME events in the Space Weather Database Of Notification, Knowledge, Information and the Large Angle and Spectrometric Coronagraph CME Catalog, and we compile a list of CMEs, including halo CMEs and nonhalo CMEs, associated with ARs in the period between 2010 November and 2023 August. We use the information gathered above to build the labels (positive vs. negative) of the data samples and profiles at hand, where the labels are needed for machine learning. Experimental results show that DeepHalo with a true skill statistic (TSS) score of 0.907 outperforms a closely related long short-term memory network with a TSS score of 0.821. To our knowledge, this is the first time that the transformer model has been used for halo CME prediction. 
    more » « less
  4. Tremor is one of the main symptoms of Parkinson’s Disease (PD) that reduces the quality of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part III. However, the assessment is based on onsite physical examinations and does not fully represent the patients’ tremor experience in their day-to-day life. Our objective in this paper was to develop algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the patients performed a variety of free body movements. We developed two methods: an ensemble model based on gradient tree boosting and a deep learning model based on long short-term memory (LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD subjects. Our analysis demonstrated that the method based on gradient tree boosting provided a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out cross-validation) between the estimated and clinically assessed tremor subscores in comparison to the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77 using subject-based, leave-one-out cross-validation). These results indicate that our approach holds great promise in providing a full spectrum of the patients’ tremor from continuous monitoring of the subjects’ movement in their natural environment. 
    more » « less
  5. Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’. 
    more » « less