skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS
The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.  more » « less
Award ID(s):
1707398
PAR ID:
10248580
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hempel de Ibarra, N ; Mustard, J. (Ed.)
    Insects exhibit remarkable sensory , motor capabilities to successfully navigate their environment. As insects move, they activate sensory afferents. Hence, insects are inextricably part of their sensory ecology. Insects must correctly attribute self -versus external sources of sensory activation to make adaptive behavioral choices. This is achieved via corollary discharge circuits (CDCs), motor-to-sensory neuronal pathways providing predictive motor signals to sensory networks to coordinate sensory processing within the context of ongoing behavior. While CDCs provide predictive motor signals, their underlying mechanisms of action and functional consequences are diverse. Here, we describe inferred CDCs and identified corollary discharge interneurons (CDIs) in insects, highlighting their anatomical commonalities and our limited understanding of their synaptic integration into the nervous system. By using connectomics information, we demonstrate that the complexity with which identified CDIs integrate into the central nervous system (CNS) can be revealed. 
    more » « less
  2. Abstract

    Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control inAplysia californica. Using the Synthetic Nervous System framework, we developed a model ofAplysiafeeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.

     
    more » « less
  3. Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural cells that in turn regulate the needed cellular processes taking place during each developmental period. These include neural cell proliferation and neuronal differentiation, which are crucial for developmental events ranging from the earliest steps of morphogenesis of the neural tube through the establishment of neuronal circuits. Here, we compile studies assessing the ontogeny of ionic currents in the developing nervous system. We then review work demonstrating a role for ion channels in neural tube formation, to underscore the necessity of the signaling downstream ion channels even at the earliest stages of neural development. We discuss the function of ion channels in neural cell proliferation and neuronal differentiation and conclude with how the regulation of all these morphogenetic and cellular processes by electrical activity enables the appropriate development of the nervous system and the establishment of functional circuits adapted to respond to a changing environment. 
    more » « less
  4. Synopsis Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner are poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the central nervous system, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input–output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state. 
    more » « less
  5. ABSTRACT

    The integration of sensory information is required to maintain body posture and to generate robust yet flexible locomotion through unpredictable environments. To anticipate required adaptations in limb posture and enable compensation of sudden perturbations, an animal's nervous system assembles external (exteroception) and internal (proprioception) cues. Coherent neuronal representations of the proprioceptive context of the body and the appendages arise from the concerted action of multiple sense organs monitoring body kinetics and kinematics. This multimodal proprioceptive information, together with exteroceptive signals and brain-derived descending motor commands, converges onto premotor networks – i.e. the local neuronal circuitry controlling motor output and movements – within the ventral nerve cord (VNC), the insect equivalent of the vertebrate spinal cord. This Review summarizes existing knowledge and recent advances in understanding how local premotor networks in the VNC use convergent information to generate contextually appropriate activity, focusing on the example of posture control. We compare the role and advantages of distributed sensory processing over dedicated neuronal pathways, and the challenges of multimodal integration in distributed networks. We discuss how the gain of distributed networks may be tuned to enable the behavioral repertoire of these systems, and argue that insect premotor networks might compensate for their limited neuronal population size by, in comparison to vertebrate networks, relying more heavily on the specificity of their connections. At a time in which connectomics and physiological recording techniques enable anatomical and functional circuit dissection at an unprecedented resolution, insect motor systems offer unique opportunities to identify the mechanisms underlying multimodal integration for flexible motor control.

     
    more » « less