skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms by which marine heatwaves affect seabirds
Marine heatwaves (MHWs) are characterized by periods of extreme warming of local to basin-scale marine habitat. Effects of MHWs on some seabirds (e.g. mass die-offs) are well documented, but mechanisms by which seabirds respond to MHWs remain poorly understood. Following from a symposium at the 3rdWorld Seabird Conference, this Theme Section presents recent research to address this knowledge gap. Studies included here spanned one or more MHW event, at spatial scales from individual seabird colonies to large marine ecosystems in subtropical, temperate, and polar oceans, and over timespans from months to decades. The findings summarized herein indicate that MHWs can affect seabirds directly by creating physiological heat stress that affects behavior or survival, or indirectly by disrupting seabird food webs, largely by altering metabolic rates in ectothermic prey species, leading to effects on their associated predators and prey. Four main mechanisms by which MHWs affect seabirds are (1) habitat modification, (2) physiological forcing, (3) behavioral responses, and (4) ecological processes or species interactions. Most seabird species have experienced limited effects from MHWs to date, owing to ecological and behavioral adaptations that buffer MHW effects. However, the intensity and frequency of MHWs is increasing due to global warming, and more seabird species may have difficulty coping with future heatwave events. Also, MHW impacts can persist for years after a MHW ends, so consequences of recent or future MHWs could continue to unfold over time for many long-lived seabird species.  more » « less
Award ID(s):
2142918
PAR ID:
10581747
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Inter-Research
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
737
ISSN:
0171-8630
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We used seabird surveys and concurrent oceanographic observations in the Northern Gulf of Alaska during spring 1998-2019 to evaluate how seabirds responded to temperature variability, including a protracted marine heatwave, in a highly heterogeneous ecosystem. We examined temporally changing distributions of seabirds along the Seward Line, a 220 km transect across the shelf and slope, and evaluated relationships between water-mass properties and seabird abundance. Environmental factors associated with abundance include depth, water-column temperature and salinity, and surface-current velocities. Environmental responses of alcids and gulls contrasted with those of procellariiform (tubenose) seabirds, and their trajectories suggest a possible shift in community composition under future climate warming. Changes in seabird distribution and abundance associated with a shift from cold to warm conditions were especially pronounced over the middle- and outer-shelf domains, which are transitional between coastal and oceanic water masses. The abundance of tubenoses increased during and after the heatwave, whereas alcids and gulls shifted inshore, exhibited reproductive failures, and experienced mass mortalities due to starvation. Tubenoses appear well-adapted to periods of lower productivity during warming events because of their flight efficiency, allowing them to search widely to locate prey patches. In contrast, alcids, which forage by diving and have energetically expensive flight, appear sensitive to such conditions. 
    more » « less
  2. Abstract The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster. 
    more » « less
  3. Abstract The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a tracking algorithm called Ocetrac that provides the objective characterization of MHW spatiotemporal evolution. Candidate MHW grid points are defined in detrended gridded sea temperature data using a seasonally varying temperature threshold. Identified MHW points are collected into spatially distinct objects using edge detection with weak sensitivity to edge detection and size percentile threshold criteria at each time step. Ocetrac then uses 3D connectivity to determine if these objects are part of the same event, but Ocetrac only defines the full MHW event after all time steps have been processed, limiting its use in predictability studies. Here, Ocetrac is applied to monthly satellite sea surface temperature data from September 1981 through January 2021. The resulting MHWs are characterized by their intensity, duration, and total area covered. The global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea are spatially isolated, while major MHWs in the Pacific and Indian Oceans are connected in space and time. The largest and most long-lasting MHW using this method lasts for 60 months from November 2013 to October 2018, encompassing previously identified MHW events including those in the northeast Pacific (2014–15), the Tasman Sea (2015–16, 2017–18), and the Great Barrier Reef (2016). Significance StatementThis study introduces Ocetrac, a method to track the spatiotemporal evolution of marine heatwaves (MHWs). It is applied to satellite sea surface temperature data from 1981 to 2021. The method objectively identifies and tracks MHWs in space and time while allowing for splitting and merging. The resulting MHWs are characterized by intensity, duration, and total area covered. Marine heatwaves can have significant ecological consequences, including biodiversity loss and mortality, geographical shifts, and range reductions in marine species and community structure changes when physiological thresholds are exceeded. This results in both ecological and economic impacts. Ocetrac provides a method of tracking the space and time evolution of MHWs that can provide a visualization that demonstrates the global impact of these events. 
    more » « less
  4. Abstract Prediction of the rapid intensification (RI) of tropical cyclones (TCs) is crucial for improving disaster preparedness against storm hazards. These events can cause extensive damage to coastal areas if occurring close to landfall. Available models struggle to provide accurate RI estimates due to the complexity of underlying physical mechanisms. This study provides new insights into the prediction of a subset of rapidly intensifying TCs influenced by prolonged ocean warming events known as marine heatwaves (MHWs). MHWs could provide sufficient energy to supercharge TCs. Preconditioning by MHW led to RI of recent destructive TCs, Otis (2023), Doksuri (2023), and Ian (2022), with economic losses exceeding $150 billion. Here, we analyze the TC best track and sea surface temperature data from 1981 to 2023 to identify hotspot regions for compound events, where MHWs and RI of tropical cyclones occur concurrently or in succession. Building upon this, we propose an ensemble machine learning model for RI forecasting based on storm and MHW characteristics. This approach is particularly valuable as RI forecast errors are typically largest in favorable environments, such as those created by MHWs. Our study offers insight into predicting MHW TCs, which have been shown to be stronger TCs with potentially higher destructive power. Here, we show that using MHW predictors instead of the conventional method of using sea surface temperature reduces the false alarm rate by 30%. Overall, our findings contribute to coastal hazard risk awareness amidst unprecedented climate warming causing more frequent MHWs. 
    more » « less
  5. Abstract Marine heatwaves (MHWs)—extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences—have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can—on its own—appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability. 
    more » « less