skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projected losses of ecosystem services in the US disproportionately affect non-white and lower-income populations
Abstract Addressing how ecosystem services (ES) are distributed among groups of people is critical for making conservation and environmental policy-making more equitable. Here, we evaluate the distribution and equity of changes in ES benefits across demographic and socioeconomic groups in the United States (US) between 2020 and 2100. Specifically, we use land cover and population projections to model potential shifts in the supply, demand, and benefits of the following ES: provision of clean air, protection against a vector-borne disease (West Nile virus), and crop pollination. Across the US, changes in ES benefits are unevenly distributed among socioeconomic and demographic groups and among rural and urban communities, but are relatively uniform across geographic regions. In general, non-white, lower-income, and urban populations disproportionately bear the burden of declines in ES benefits. This is largely driven by the conversion of forests and wetlands to cropland and urban land cover in counties where these populations are expected to grow. In these locations, targeted land use policy interventions are required to avoid exacerbating inequalities already present in the US.  more » « less
Award ID(s):
1735316
PAR ID:
10248726
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Xu, Gang (Ed.)
    Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package,foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation. 
    more » « less
  2. Abstract Urban tree canopy cover is often unequally distributed across cities such that more socially vulnerable neighborhoods often have lower tree canopy cover than less socially vulnerable neighborhoods. However, how the diversity and composition of the urban canopy affect the nature of social‐ecological benefits (and burdens), including the urban forest's vulnerability to climate change, remains underexamined. Here, we synthesize tree inventories developed by multiple organizations and present a species‐specific, geolocated database of more than 600,000 urban trees across the 7‐county Minneapolis‐St. Paul (MSP) metropolitan area in the Upper Midwest of the United States. We find that tree diversity across the MSP is variable yet dominated by a few species (e.g.,Fraxinus pennsylvanica,Acer platanoides, andGleditsia triacanthos), contributing to the vulnerability of the MSP urban forest to future climate change and disturbances. In contrast to tree canopy cover, tree diversity was not well predicted by socioeconomic or demographic factors. However, our analysis identified areas where both climate and social vulnerability are high. Our results add to a growing body of literature emphasizing the importance of considering how complex and interacting social and ecological factors drive urban forest diversity and composition when pursuing management objectives. 
    more » « less
  3. Abstract Population change is a main driver behind global environmental change, including urban land expansion. In future scenario modeling, assumptions regarding how populations will change locally, despite identical global constraints of Shared Socioeconomic Pathways (SSPs), can have dramatic effects on subsequent regional urbanization. Using a spatial modeling experiment at high resolution (1 km), this study compared how two alternative US population projections, varying in the spatially explicit nature of demographic patterns and migration, affect urban land dynamics simulated by the Spatially Explicit, Long-term, Empirical City development (SELECT) model for SSP2, SSP3, and SSP5. The population projections included: (1) newer downscaled state-specific population (SP) projections inclusive of updated international and domestic migration estimates, and (2) prevailing downscaled national-level projections (NP) agnostic to localized demographic processes. Our work shows that alternative population inputs, even those under the same SSP, can lead to dramatic and complex differences in urban land outcomes. Under the SP projection, urbanization displays more of an extensification pattern compared to the NP projection. This suggests that recent demographic information supports more extreme urban extensification and land pressures on existing rural areas in the US than previously anticipated. Urban land outcomes to population inputs were spatially variable where areas in close spatial proximity showed divergent patterns, reflective of the spatially complex urbanization processes that can be accommodated in SELECT. Although different population projections and assumptions led to divergent outcomes, urban land development is not a linear product of population change but the result of complex relationships between population, dynamic urbanization processes, stages of urban development maturity, and feedback mechanisms. These findings highlight the importance of accounting for spatial variations in the population projections, but also urbanization process to accurately project long-term urban land patterns. 
    more » « less
  4. Abstract Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow. 
    more » « less
  5. The research on coastal hazards predicts substantial adverse impacts of chronic and episodic flooding on populated coastal areas. Despite the growing evidence about anticipated flood risks, many coastal communities are still not adapting. The observed disconnect between science on physical impacts and adaptation decisionmaking in part reflects stakeholders’ inability to envision the implications of these impacts on socioeconomic systems and the built environment in their jurisdictions. This inertia is particularly apparent in the discourse on flood-driven displacement and relocation. There is a lack of knowledge about direct and indirect flood impacts on community attributes and services that contribute to relocation decision-making. This study holistically evaluates the flood exposure on municipal features vital for socioeconomic stability, livelihoods, and quality of life across spatiotemporal scales. As such, it uses a more nuanced approach to relocation risk assessment than those solely focused on direct inundation impacts. It measures flood exposure of land use, land cover, and sociocultural and economic dimensions that are important drivers of relocation in selected rural and urban areas. The approach uses a 50-year floodplain to delineate populated coastal locations exposed to 2% Annual Exceedance Probability (AEP) storm surge projections adjusted for 2030, 2060, and 2090 sea level rise (SLR) scenarios. It then evaluates the potential impacts of this flood exposure on different types of land uses and critical socioeconomic assets in rural (Dorchester and Talbot Counties, Maryland, USA) and urban (Cities of Hampton, Norfolk, Portsmouth, and Virginia Beach, Virginia, USA) settings. The results show that some urban land uses, such as open space, military and mixed-use, and rural residential and commercial areas, might experience significantly more flooding. There are also notable differences in the baseline flood exposure and the anticipated rate and acceleration in the future among selected communities with significant implications for relocation planning. 
    more » « less