skip to main content

Title: Sensitivity to neutrinos from the solar CNO cycle in Borexino
Abstract Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Italy) has a unique opportunity to detect them directly thanks to the detector’s radiopurity and the precise understanding of the detector backgrounds. We discuss the sensitivity of Borexino to CNO neutrinos, which is based on the strategies we adopted to constrain the rates of the two most relevant background sources, $$pep$$ pep neutrinos from the solar pp -chain and $$^{210}$$ 210 Bi beta decays originating in the intrinsic contamination of the liquid scintillator with $$^{210}$$ 210 Pb. Assuming the CNO flux predicted by the high-metallicity Standard Solar Model and an exposure of 1000 days $$\times $$ × 71.3 t, Borexino has a median sensitivity to CNO neutrino higher than 3 $$\sigma $$ σ . With the same hypothesis the expected experimental uncertainty on the CNO neutrino flux is 23%, provided the uncertainty on the independent estimate of the $$^{210}\text {Bi}$$ 210 Bi  interaction rate is 1.5 $$\hbox {cpd}/100~\hbox {ton}$$ cpd / 100 ton  . Finally, we evaluated the expected uncertainty of the more » C and N abundances and the expected discrimination significance between the high and low metallicity Standard Solar Models (HZ and LZ) with future more precise measurement of the CNO solar neutrino flux. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1821085 1821071 1821080
Publication Date:
NSF-PAR ID:
10249402
Journal Name:
The European Physical Journal C
Volume:
80
Issue:
11
ISSN:
1434-6044
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp , $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep . The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep components is hindered by the double-beta decay of $$^{136}$$ 136 Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, $$\sinmore »^2\theta _w$$ sin 2 θ w , and the electron-type neutrino survival probability, $$P_{ee}$$ P ee , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and $$^7$$ 7 Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5 $$\sigma $$ σ significance, independent of external measurements from other experiments or a measurement of $$^8$$ 8 B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $$^{131}$$ 131 Xe.« less
  2. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a concept for a neutrino telescope designed to measure tau lepton air showers generated from tau neutrino interactions near the horizon. This detection mechanism provides a pure measurement of the tau flavor of cosmogenic neutrinos, which could be used to set limits on the observed flavor ratios for cosmogenic neutrinos in a manner complimentary to the all-flavor neutrino flux measurements made by other experiments. BEACON is expected to also be capable of detecting cosmic rays through RF-only triggers. BEACON aims to achieve this sensitivity by using mountaintop radio arrays of dual-polarizedmore »antennas operating in the 30-80 MHz band which utilize directional interferometric triggering. BEACON stations are designed to efficiently use a small amount of instrumentation, allowing for deployment in a variety of high-elevation sites. The interferometric trigger provides a natural tool for directional-based anthropogenic RFI rejection at the trigger level, broadening the list for potential station sites. The BEACON prototype has seen continuous design advancements towards improving the mechanical durability and scientific capabilities since its initial deployment at White Mountain Research Station in 2018. Here we present the current prototype’s sensitivity to RF-triggered cosmic-ray background signals. We also present the next generation prototype, which includes scintillating cosmic ray detectors, improved antennas, and refined calibration techniques.« less
  3. Context. Stars evolving along the asymptotic giant branch (AGB) can become carbon rich in the final part of their evolution. The detailed description of their spectra has led to the definition of several spectral types: N, SC, J, and R. To date, differences among them have been partially established only on the basis of their chemical properties. Aims. An accurate determination of the luminosity function (LF) and kinematics together with their chemical properties is extremely important for testing the reliability of theoretical models and establishing on a solid basis the stellar population membership of the different carbon star types. Methods.more »Using Gaia Data Release 2 ( Gaia DR2) astrometry, we determine the LF and kinematic properties of a sample of 210 carbon stars with different spectral types in the solar neighbourhood with measured parallaxes better than 20%. Their spatial distribution and velocity components are also derived. Furthermore, the use of the infrared Wesenheit function allows us to identify the different spectral types in a Gaia -2MASS diagram. Results. We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M bol  ∼ −5.2 mag. The resulting LF, however, shows two tails at lower and higher luminosities more extended than those previously found, indicating that AGB carbon stars with solar metallicity may reach M bol  ∼ −6.0 mag. This contrasts with the narrower LF derived in Galactic carbon Miras from previous studies. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found, although fainter in any case by several magnitudes than other carbon types. Part of these differences are due to systematically lower parallaxes measured by Gaia DR2 with respect to H IPPARCOS values, in particular for sources with parallax ϖ < 1 mas. The Galactic spatial distribution and velocity components of the N-, SC-, and J-type stars are very similar, while about 30% of the R-hot stars in the sample are located at distances greater than ∼500 pc from the Galactic plane, and show a significant drift with respect to the local standard of rest. Conclusions. The LF derived for N- and SC-type in the solar neighbourhood fully agrees with the expected luminosity of stars of 1.5−3 M ⊙ on the AGB. On a theoretical basis, the existence of an extended low-luminosity tail would require a contribution of extrinsic low-mass carbon stars, while the high-luminosity tail would imply that stars with mass values up to ∼5 M ⊙ may become carbon stars on the AGB. J-type stars differ significantly not only in their chemical composition with respect to the N- and SC-types, but also in their LF, which reinforces the idea that these carbon stars belong to a different type whose origin is still unknown. The derived luminosities of R-hot stars means that it is unlikely that these stars are in the red-clump, as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity values, indicate that most of the N-, SC-, and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.« less
  4. The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energymore »of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.« less
  5. Abstract We report on a search for electron antineutrinos ( ν ¯ e ) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm −2 s −1 (90% confidence level, CL) in the analysis range and present a model-independentmore »flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of 8 B solar neutrinos converting into ν ¯ e , P ν e → ν ¯ e < 3.5 × 10 − 5 (90% CL) assuming an undistorted ν ¯ e shape. This corresponds to a solar ν ¯ e flux of 60 cm −2 s −1 (90% CL) in the analysis energy range.« less