skip to main content


Title: Technical note: Deep learning for creating surrogate models of precipitation in Earth system models
Abstract. We investigate techniques for using deep neural networks to produce surrogatemodels for short-term climate forecasts. A convolutional neural network istrained on 97 years of monthly precipitation output from the 1pctCO2 run (theCO2 concentration increases by 1 % per year) simulated by the second-generation Canadian Earth System Model (CanESM2). The neural network clearly outperforms a persistence forecast anddoes not show substantially degraded performance even when the forecast lengthis extended to 120 months. The model is prone to underpredicting precipitationin areas characterized by intense precipitation events. Scheduled sampling(forcing the model to gradually use its own past predictions rather than groundtruth) is essential for avoiding amplification of early forecasting errors.However, the use of scheduled sampling also necessitates preforecasting(generating forecasts prior to the first forecast date) to obtain adequateperformance for the first few prediction time steps. We document the trainingprocedures and hyperparameter optimization process for researchers who wish toextend the use of neural networks in developing surrogate models.  more » « less
Award ID(s):
1931641
NSF-PAR ID:
10249444
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
20
Issue:
4
ISSN:
1680-7324
Page Range / eLocation ID:
2303 to 2317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally optimize hyperparameters using ∼250 trials. Our DNN explains over 70% of the temporal variance at the 15‐min sampling scale throughout the mid‐to‐upper troposphere. Autocorrelation timescale analysis compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A closer look at the diurnal cycle reveals correct emulation of land‐sea contrasts and vertical structure in the heating and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill reveal complementary effects of adding positive constraints versus hyperparameter tuning, motivating the use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric fields produces reassuring results further supporting neural network emulation viability in real‐geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual and Convolutional Neural Network architectures trained on added information, including memory of past states. Our results confirm the parameterizability of superparameterized convection with continents through machine learning and we highlight the advantages of casting this problem locally in space and time for accurate emulation and hopefully quick implementation of hybrid climate models.

     
    more » « less
  2. Abstract

    Recent observations with varied schedules and types (moving average, snapshot, or regularly spaced) can help to improve streamflow forecasts, but it is challenging to integrate them effectively. Based on a long short‐term memory (LSTM) streamflow model, we tested multiple versions of a flexible procedure we call data integration (DI) to leverage recent discharge measurements to improve forecasts. DI accepts lagged inputs either directly or through a convolutional neural network unit. DI ubiquitously elevated streamflow forecast performance to unseen levels, reaching a record continental‐scale median Nash‐Sutcliffe Efficiency coefficient value of 0.86. Integrating moving‐average discharge, discharge from the last few days, or even average discharge from the previous calendar month could all improve daily forecasts. Directly using lagged observations as inputs was comparable in performance to using the convolutional neural network unit. Importantly, we obtained valuable insights regarding hydrologic processes impacting LSTM and DI performance. Before applying DI, the base LSTM model worked well in mountainous or snow‐dominated regions, but less well in regions with low discharge volumes (due to either low precipitation or high precipitation‐energy synchronicity) and large interannual storage variability. DI was most beneficial in regions with high flow autocorrelation: it greatly reduced baseflow bias in groundwater‐dominated western basins and also improved peak prediction for basins with dynamical surface water storage, such as the Prairie Potholes or Great Lakes regions. However, even DI cannot elevate performance in high‐aridity basins with 1‐day flash peaks. Despite this limitation, there is much promise for a deep‐learning‐based forecast paradigm due to its performance, automation, efficiency, and flexibility.

     
    more » « less
  3. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less
  4. Abstract

    Accurate short‐term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39‐years (1980–2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state‐of‐the‐art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather‐model forecasts significantly improves the accuracy of model forecasts, especially for heavy‐precipitation events. Furthermore, the millisecond‐scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short‐term weather predictions.

     
    more » « less
  5. Abstract

    Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks. As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system. We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and heatwaves.

    Significance Statement

    Heatwaves (prolonged extremely warm temperatures) cause thousands of fatalities worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning methods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves more than two weeks in advance. These early warnings can be used to activate effective and timely response plans targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves.

     
    more » « less