skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Regret of Policy Optimization in Non-Stationary Environments
We consider reinforcement learning (RL) in episodic MDPs with adversarial full-information reward feedback and unknown fixed transition kernels. We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret. Compared with the classical notion of static regret, dynamic regret is a stronger notion as it explicitly accounts for the non-stationarity of environments. The dynamic regret attained by the proposed algorithms interpolates between different regimes of non-stationarity, and moreover satisfies a notion of adaptive (near-)optimality, in the sense that it matches the (near-)optimal static regret under slow-changing environments. The dynamic regret bound features two components, one arising from exploration, which deals with the uncertainty of transition kernels, and the other arising from adaptation, which deals with non-stationary environments. Specifically, we show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction. To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments.  more » « less
Award ID(s):
1955997
PAR ID:
10249848
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
33
ISSN:
1049-5258
Page Range / eLocation ID:
6743--6754
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation. 
    more » « less
  2. null (Ed.)
    Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the cornerstones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has been investigated relatively much less often. In this paper, we aim to address the fundamental open question about the sample complexity of model-based MARL. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model of state transition. We show that model-based MARL achieves a near optimal sample complexity for finding the Nash equilibrium (NE) \emph{value} up to some additive error. We also show that this method is near-minimax optimal with a tight dependence on the horizon and the number of states. Our results justify the efficiency of this simple model-based approach in the multi-agent RL setting. 
    more » « less
  3. Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions. We open source our code at https://github.com/clutr/clutr. 
    more » « less
  4. We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite horizon T with fixed and known cost matrices Q,R, but unknown and non-stationary dynamics A_t, B_t. The sequence of dynamics matrices can be arbitrary, but with a total variation, V_T, assumed to be o(T) and unknown to the controller. Under the assumption that a sequence of stabilizing, but potentially sub-optimal controllers is available for all t, we present an algorithm that achieves the optimal dynamic regret of O(V_T^2/5 T^3/5 ). With piecewise constant dynamics, our algorithm achieves the optimal regret of O(sqrtST ) where S is the number of switches. The crux of our algorithm is an adaptive non-stationarity detection strategy, which builds on an approach recently developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive forgetting (e.g., restarting or using sliding window learning with a static window size) may not be regret optimal for the LQR problem, even when the window size is optimally tuned with the knowledge of $$V_T$$. The main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares (OLS) estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis also highlights that the key motif driving the regret is that the LQR problem is in spirit a bandit problem with linear feedback and locally quadratic cost. This motif is more universal than the LQR problem itself, and therefore we believe our results should find wider application. 
    more » « less
  5. Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the individual hazard arising from each environmental variable in isolation, but also for the case of bivariate hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially under climatic variability and change that may affect their relationship. In this article, we demonstrate our search for evidence of non-stationarity in the dependence between river discharge and storm surge along the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Niño Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude of dependence as a linear function of large-scale climate indices, i.e., Oceanic Niño Index or NAO index. After model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-stationarity assumption. As an example, we find that during a strong El-Niño year, Galveston Bay, TX, is much more likely to experience a coincidence of abnormal sea level and elevated river stage. 
    more » « less