Advancing speech emotion recognition (SER) de- pends highly on the source used to train the model, i.e., the emotional speech corpora. By permuting different design parameters, researchers have released versions of corpora that attempt to provide a better-quality source for training SER. In this work, we focus on studying communication modes of collection. In particular, we analyze the patterns of emotional speech collected during interpersonal conversations or monologues. While it is well known that conversation provides a better protocol for eliciting authentic emotion expressions, there is a lack of systematic analyses to determine whether conversational speech provide a “better-quality” source. Specifically, we examine this research question from three perspectives: perceptual differences, acoustic variability and SER model learning. Our analyses on the MSP- Podcast corpus show that: 1) rater’s consistency for conversation recordings is higher when evaluating categorical emotions, 2) the perceptions and acoustic patterns observed on conversations have properties that are better aligned with expected trends discussed in emotion literature, and 3) a more robust SER model can be trained from conversational data. This work brings initial evidences stating that samples of conversations may provide a better-quality source than samples from monologues for building a SER model.
more »
« less
The MSP-Conversation Corpus
Human-computer interactions can be very effective, especially if computers can automatically recognize the emotional state of the user. A key barrier for effective speech emotion recognition systems is the lack of large corpora annotated with emotional labels that reflect the temporal complexity of expressive behaviors, especially during multiparty interactions. This pa- per introduces the MSP-Conversation corpus, which contains interactions annotated with time-continuous emotional traces for arousal (calm to active), valence (negative to positive), and dominance (weak to strong). Time-continuous annotations offer the flexibility to explore emotional displays at different temporal resolutions while leveraging contextual information. This is an ongoing effort, where the corpus currently contains more than 15 hours of speech annotated by at least five annotators. The data is sourced from the MSP-Podcast corpus, which contains speech data from online audio-sharing websites annotated with sentence-level emotional scores. This data collection scheme is an easy, affordable, and scalable approach to obtain natural data with diverse emotional content from multiple speakers. This study describes the key features of the corpus. It also compares the time-continuous evaluations from the MSP- Conversation corpus with the sentence-level annotations of the MSP-Podcast corpus for the speech segments that overlap between the two corpora.
more »
« less
- PAR ID:
- 10250021
- Date Published:
- Journal Name:
- Interspeech 2020
- Page Range / eLocation ID:
- 1823 to 1827
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Speech emotion recognition (SER) plays an important role in multiple fields such as healthcare, human-computer interaction (HCI), and security and defense. Emotional labels are often annotated at the sentence-level (i.e., one label per sentence), resulting in a sequence-to-one recognition problem. Traditionally, studies have relied on statistical descriptions, which are com- puted over time from low level descriptors (LLDs), creating a fixed dimension sentence-level feature representation regardless of the duration of the sentence. However sentence-level features lack temporal information, which limits the performance of SER systems. Recently, new deep learning architectures have been proposed to model temporal data. An important question is how to extract emotion-relevant features with temporal infor- mation. This study proposes a novel data processing approach that extracts a fixed number of small chunks over sentences of different durations by changing the overlap between these chunks. The approach is flexible, providing an ideal frame- work to combine gated network or attention mechanisms with long short-term memory (LSTM) networks. Our experimental results based on the MSP-Podcast dataset demonstrate that the proposed method not only significantly improves recognition accuracy over alternative temporal-based models relying on LSTM, but also leads to computational efficiency.more » « less
-
na (Ed.)Deep clustering is a popular unsupervised technique for feature representation learning. We recently proposed the chunk-based DeepEmoCluster framework for speech emotion recognition (SER) to adopt the concept of deep clustering as a novel semi-supervised learning (SSL) framework, which achieved improved recognition performances over conventional reconstruction-based approaches. However, the vanilla DeepEmoCluster lacks critical sentence- level temporal information that is useful for SER tasks. This study builds upon the DeepEmoCluster framework, creating a powerful SSL approach that leverages temporal information within a sentence. We propose two sentence-level temporal modeling alternatives using either the temporal-net or the triplet loss function, resulting in a novel temporal-enhanced DeepEmoCluster framework to capture essential temporal information. The key contribution to achieving this goal is the proposed sentence-level uniform sampling strategy, which preserves the original temporal order of the data for the clustering process. An extra network module (e.g., gated recurrent unit) is utilized for the temporal-net option to encode temporal information across the data chunks. Alternatively, we can impose additional temporal constraints by using the triplet loss function while training the DeepEmoCluster framework, which does not increase model complexity. Our experimental results based on the MSP-Podcast corpus demonstrate that the proposed temporal-enhanced framework significantly outperforms the vanilla DeepEmoCluster framework and other existing SSL approaches in regression tasks for the emotional attributes arousal, dominance, and valence. The improvements are observed in fully-supervised learning or SSL implementations. Further analyses validate the effectiveness of the proposed temporal modeling, showing (1) high temporal consistency in the cluster assignment, and (2) well-separated emotional patterns in the generated clusters.more » « less
-
na (Ed.)The field of speech emotion recognition (SER) aims to create scientifically rigorous systems that can reliably characterize emotional behaviors expressed in speech. A key aspect for building SER systems is to obtain emotional data that is both reliable and reproducible for practitioners. However, academic researchers encounter difficulties in accessing or collecting naturalistic, large-scale, reliable emotional recordings. Also, the best practices for data collection are not necessarily described or shared when presenting emotional corpora. To address this issue, the paper proposes the creation of an affective naturalistic database consortium (AndC) that can encourage multidisciplinary cooperation among researchers and practitioners in the field of affective computing. This paper’s contribution is twofold. First, it proposes the design of the AndC with a customizable-standard framework for intelligently-controlled emotional data collection. The focus is on leveraging naturalistic spontaneous record- ings available on audio-sharing websites. Second, it presents as a case study the development of a naturalistic large-scale Taiwanese Mandarin podcast corpus using the customizable- standard intelligently-controlled framework. The AndC will en- able research groups to effectively collect data using the provided pipeline and to contribute with alternative algorithms or data collection protocols.more » « less
-
to inconsistencies between annotators. The low inter-evaluator agreement arises due to the complex nature of emotions. Conventional approaches average scores provided by multiple annotators. While this approach reduces the influence of dissident annotations, previous studies have showed the value of considering individual evaluations to better capture the underlying ground-truth. One of these approaches is the qualitative agreement (QA) method, which provides an alternative framework that captures the inherent trends amongst the annotators. While previous studies have focused on using the QA method for time-continuous annotations from a fixed number of annotators, most emotional databases are annotated with attributes at the sentence-level (e.g., one global score per sentence). This study proposes a novel formulation based on the QA framework to estimate reliable sentence-level annotations for preferencelearning. The proposed relative labels between pairs of sentences capture consistent trends across evaluators. The experimental evaluation shows that preference-learning methods to rank-order emotional attributes trained with the proposed QAbased labels achieve significantly better performance than the same algorithms trained with relative scores obtained by averaging absolute scores across annotators. These results show the benefits of QA-based labels for preference-learning using sentence-level annotations.more » « less