skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward an Integrated Intervention and Assessment of Robot-Based Rehabilitation
Abstract This study presents robot-based rehabilitation and its assessment. Robotic devices have significantly been useful to help therapists do the training procedure consistently. However, as robotic devices interface with humans, quantifying the interaction and its intended outcomes is still a research challenge. In this study, human–robot interaction during rehabilitation is assessed based on measurable interaction forces and human physiological response data, and correlations are established to plan the intervention and effective limb trajectories within the intended rehabilitation and interaction forces. In this study, the Universal Robot 5 (UR5) is used to guide and support the arm of a subject over a predefined trajectory while recording muscle activities through surface electromyography (sEMG) signals using the Trigno wireless DELSYS devices. The interaction force is measured through the force sensor mounted on the robot end-effector. The force signals and the human physiological data are analyzed and classified to infer the related progress. Feature reduction and selection techniques are used to identify redundant inputs and outputs.  more » « less
Award ID(s):
1915872
PAR ID:
10250310
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Engineering and Science in Medical Diagnostics and Therapy
Volume:
3
Issue:
2
ISSN:
2572-7958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces a novel cable-driven robotic platform that enables six degrees-of-freedom (DoF) natural head–neck movements. Poor postural control of the head–neck can be a debilitating symptom of neurological disorders such as amyotrophic lateral sclerosis and cerebral palsy. Current treatments using static neck collars are inadequate, and there is a need to develop new devices to empower movements and facilitate physical rehabilitation of the head–neck. State-of-the-art neck exoskeletons using lower DoF mechanisms with rigid linkages are limited by their hard motion constraints imposed on head–neck movements. By contrast, the cable-driven robot presented in this paper does not constrain motion and enables wide-range, 6-DoF control of the head–neck. We present the mechatronic design, validation, and control implementations of this robot, as well as a human experiment to demonstrate a potential use case of this versatile robot for rehabilitation. Participants were engaged in a target reaching task while the robot applied both assistive and resistive moments on the head during the task. Our results show that neck muscle activation increased by 19% when moving the head against resistance and decreased by 28–43% when assisted by the robot. Overall, these results provide a scientific justification for further research in enabling movement and identifying personalized rehabilitation for motor training. Beyond rehabilitation, other applications such as applying force perturbations on the head to study sensory integration and applying traction to achieve pain relief may benefit from the innovation of this robotic platform which is capable of applying controlled 6-DoF forces/moments on the head. 
    more » « less
  2. Abstract Understanding the human motor control strategy during physical interaction tasks is crucial for developing future robots for physical human–robot interaction (pHRI). In physical human–human interaction (pHHI), small interaction forces are known to convey their intent between the partners for effective motor communication. The aim of this work is to investigate what affects the human’s sensitivity to the externally applied interaction forces. The hypothesis is that one way the small interaction forces are sensed is through the movement of the arm and the resulting proprioceptive signals. A pHRI setup was used to provide small interaction forces to the hand of seated participants in one of four directions, while the participants were asked to identify the direction of the push while blindfolded. The result shows that participants’ ability to correctly report the direction of the interaction force was lower with low interaction force as well as with high muscle contraction. The sensitivity to the interaction force direction increased with the radial displacement of the participant’s hand from the initial position: the further they moved the more correct their responses were. It was also observed that the estimated stiffness of the arm varies with the level of muscle contraction and robot interaction force. 
    more » « less
  3. Abstract In this study, a 13 degrees of freedom (DOFs) three-dimensional (3D) human arm model and a 10 DOFs 3D robotic arm model are used to validate the grasping force for human-robot lifting motion prediction. The human arm and robotic arm are modeled in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The human-box and robot-box interactions are characterized as a collection of grasping forces. The joint torque squares of human arm and robot arm are minimized subjected to physics and task constraints. The design variables include (1) control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box; and (2) the discretized grasping forces during lifting. Both numerical and experimental human-robot liftings were performed with a 2 kg box. The simulation reports the human arm’s joint angle profiles, joint torque profiles, and grasping force profiles. The comparisons of the joint angle profiles and grasping force profiles between experiment and simulation are presented. The simulated joint angle profiles have similar trends to the experimental data. It is concluded that human and robot share the load during lifting process, and the predicted human grasping force matches the measured experimental grasping force reasonably well. 
    more » « less
  4. Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task. 
    more » « less
  5. Abstract B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human intent information. Extracted features from B-mode images can help improve closed-loop human–robotic interaction control when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural features from US images is laborious, time-consuming, and subjective among different investigators. This paper proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the proposed algorithm to two mature benchmark techniques: UltraTrack and ImageJ. The performance of the proposed approach showed higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-frequency data stream. 
    more » « less