skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of scatter in the galaxy UV luminosity to halo mass relation on Ly α visibility during the epoch of reionization
The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity-halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity-halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, \overline xHI, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer \overline xHI = 0.55-0.13+0.11 with scatter, compared to \overline xHI = 0.59-0.14+0.12 without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.  more » « less
Award ID(s):
1852268
PAR ID:
10250323
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly notices of the Royal Astronomical Society
Volume:
495
Issue:
4
ISSN:
1745-3933
Page Range / eLocation ID:
3602-3613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $$\overline{x}_{\mathrm{ H}\,{\small I}}$$, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $$\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$$ with scatter, compared to $$\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies. 
    more » « less
  2. ABSTRACT Recent work has shown that UV-luminous reionization-era galaxies often exhibit strong Lyman-alpha emission despite being situated at redshifts where the IGM is thought to be substantially neutral. It has been argued that this enhanced Ly α transmission reflects the presence of massive galaxies in overdense regions which power large ionized bubbles. An alternative explanation is that massive galaxies shift more of their Ly α profile to large velocities (relative to the systemic redshift) where the IGM damping wing absorption is reduced. Such a mass-dependent trend is seen at lower redshifts, but whether one exists at z ∼ 7 remains unclear owing to the small number of existing systemic redshift measurements in the reionization era. This is now changing with the emergence of [C ii]-based redshifts from ALMA. Here, we report MMT/Binospec Ly α spectroscopy of eight UV-bright (MUV ∼ −22) galaxies at z ≃ 7 selected from the ALMA REBELS survey. We detect Ly α in four of eight galaxies and use the [C ii] systemic redshifts to investigate the Ly α velocity profiles. The Ly α lines are significantly redshifted from systemic (average velocity offset = 223 km s–1) and broad (FWHM ≈ 300–650 km s−1), with two sources showing emission extending to ≈750 km s−1. We find that the broadest Ly α profiles are associated with the largest [C ii] line widths, suggesting a potential link between the Ly α FWHM and the dynamical mass. Since Ly α photons at high velocities transmit efficiently through the z = 7 IGM, our data suggest that velocity profiles play a significant role in boosting the Ly α visibility of the most UV-luminous reionization-era galaxies. 
    more » « less
  3. ABSTRACT Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($$\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Ly α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i. 
    more » « less
  4. ABSTRACT The observability of Lyα emitting galaxies (LAEs) during the Epoch of Reionization can provide a sensitive probe of the evolving neutral hydrogen gas distribution, thus setting valuable constraints to distinguish different reionization models. In this study, we utilize the new thesan suite of large-volume ($$L_\text{box} = 95.5\, \text{cMpc}$$) cosmological radiation-hydrodynamic simulations to directly model the Lyα emission from individual galaxies and the subsequent transmission through the intergalactic medium. thesan combines the arepo-rt radiation-hydrodynamic solver with the IllustrisTNG galaxy formation model and includes high- and medium-resolution simulations designed to investigate the impacts of halo-mass-dependent escape fractions, alternative dark matter models, and numerical convergence. We find important differences in the Lyα transmission based on reionization history, bubble morphology, frequency offset from line centre, and galaxy brightness. For a given global neutral fraction, Lyα transmission reduces when low-mass haloes dominate reionization over high-mass haloes. Furthermore, the variation across sightlines for a single galaxy is greater than the variation across all galaxies. This collectively affects the visibility of LAEs, directly impacting observed Lyα luminosity functions (LFs). We employ Gaussian Process Regression using SWIFTEmulator to rapidly constrain an empirical model for dust escape fractions and emergent spectral-line profiles to match observed LFs. We find that dust strongly impacts the Lyα transmission and covering fractions of MUV ≲ −19 galaxies in $$M_\text{vir} \gtrsim 10^{11}\, \text{M}_{\bigodot }$$ haloes, such that the dominant mode of removing Lyα photons in non-LAEs changes from low-IGM transmission to high dust absorption around z ∼ 7. 
    more » « less
  5. Abstract We present Ly α and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at z = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg 2 of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Ly α emission, 2126 of which host type 1 AGNs showing broad (FWHM > 1000 km s −1 ) Ly α emission lines. We derive the Ly α (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in log L Ly α / [ erg s − 1 ] = 43.3 – 45.5 (−27 < M UV < −20) by the 1/ V max estimator. Our results reveal that the bright-end hump of the Ly α LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be α Sch = − 1.70 − 0.14 + 0.13 , which indicates that α Sch steepens from z = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly α -emitting objects ( X LAE ) increases from M UV * ∼ − 21 to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that X Ly α decreases from faint magnitudes to M UV * , suggesting a valley in the X Ly α –magnitude relation at M UV * . Comparing our UV LF of type 1 AGNs at z = 2–3 with those at z = 0, we find that the number density of faint ( M UV > −21) type 1 AGNs increases from z ∼ 2 to 0, as opposed to the evolution of bright ( M UV < −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity. 
    more » « less