skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of a Tridentate Pincer Ligand on Parahydrogen Induced Polarization
Abstract The role of ligands in rhodium‐ and iridium‐catalyzedParahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+and [Ir(NHC)(sub)3(H)2]+, and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron‐rich monoanionic bis(carbene) aryl pincer ligand,ArCCC (Ar=Dipp, 2,6‐diisopropyl or Mes, 2,4,6‐trimethylphenyl) on the cobalt‐catalyzed PHIP and PHIP‐IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (DippCCC)Co(N2) catalyst, which resulted in faster hydrogenation and up to 390‐fold1H signal enhancements, larger than that of the (MesCCC)Co‐py (py=pyridine) catalyst. Additionally, the synthesis of the (DippCCC)Rh(N2) complex is reported and applied towards the hydrogenation of ethyl acrylate withparahydrogen to generate modest signal enhancements of both1H and13C nuclei. Lastly, the generation of two (MesCCC)Ir complexes is presented and applied towards SABRE and PHIP‐IE chemistry to only yield small1H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.  more » « less
Award ID(s):
1905341
PAR ID:
10250466
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
22
Issue:
14
ISSN:
1439-4235
Format(s):
Medium: X Size: p. 1518-1526
Size(s):
p. 1518-1526
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hyperpolarized orthohydrogen (o‐H2) is a frequent product of parahydrogen‐based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarizedo‐H2signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphaseo‐H2signals are observed, with1H enhancements up to ≈500‐fold (effective polarizationPH≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal–organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the “partial negative line” (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co‐workers. The two‐spin order of theo‐H2resonance is manifested by a two‐fold higher Rabi frequency, and the lifetime of the antiphase HPo‐H2resonance is extended by several‐fold. 
    more » « less
  2. Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in gas and liquid phases. Pairwise addition of parahydrogen to the hydrogenation substrate imparts nuclear spin order to reaction products, manifested as enhanced 1 H NMR signals from the nascent proton sites. Nanoscale metal catalysts immobilized on supports comprise a promising class of catalysts for producing PHIP effects; however, on such catalysts the percentage of substrates undergoing the pairwise addition route—a necessary condition for observing PHIP—is usually low. In this paper, we present a systematic study of several metal catalysts (Rh, Pt, Pd, and Ir) supported on TiO 2 in liquid-phase hydrogenation of different prototypical phenylalkynes (phenylacetylene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) with parahydrogen. Catalyst activity and selectivity were found to be affected by both the nature of the active metal and the percentage of metal loading. It was demonstrated that the optimal catalyst for production of hyperpolarized products is Rh/TiO 2 with 4 wt% metal loading, whereas Pd/TiO 2 provided the greatest selectivity for semihydrogenation of phenylalkynes. In a study of liquid-phase hydrogenation reaction kinetics, it was shown that reaction order with respect to hydrogen is nearly the same for pairwise and non-pairwise H 2 addition—consistent with a similar nature of the catalytically active sites for these reaction pathways. 
    more » « less
  3. Abstract Hyperpolarization of N‐heterocycles with signal amplification by reversible exchange (SABRE) induces NMR sensitivity gains for biological molecules. Substitutions with functional groups, in particular in theortho‐position of the heterocycle, however, result in low polarization using a typical Ir catalyst with a bis‐mesityl N‐heterocyclic carbene ligand for SABRE, presumably due to steric hindrance. With the addition of allylamine or acetonitrile as coligands to the precatalyst chloro(1,5‐cyclooctadiene)[4,5‐dimethyl‐1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene] iridium, the1H signal enhancement increased in several substrates withorthoNH2substitutions. For example, for a proton in 2,4‐diaminopyrimidine, the enhancement factors increased from −7±1 to −210±20 with allylamine or to −160±10 with acetonitrile. CH3substituted molecules yielded maximum signal enhancements of −25±7 with acetonitrile addition, which is considerably less than the corresponding NH2substituted molecules, despite exhibiting similar steric size. With the more electron‐donating NH2substitution resulting in greater enhancement, it is concluded that steric hindrance is not the only dominant factor in determining the polarizability of the CH3substituted compounds. The addition of allylamine increased the signal enhancement for the 290 Da trimethoprim, a molecule with a 2,4‐diaminopyrimidine moiety serving as an antibacterial agent, to −70. 
    more » « less
  4. Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism. 
    more » « less
  5. null (Ed.)
    A series of bidentate N-heterocyclic carbene (NHC) iridium catalysts, [Ir(κC,N-NHC)H 2 L 2 ]BPh 4 , are proposed for SABRE hyperpolarization. The steric and electronic properties of the NHCs are used to tune substrate affinity and thereby SABRE efficiency. The sterically hindered substrates 2,4-diaminopyrimidine and trimethoprim yielded maximum proton NMR signal enhancements of ∼300-fold and ∼150-fold, respectively. 
    more » « less