skip to main content


Title: Hierarchical MPC with Coordinating Terminal Costs
The performance of hierarchical Model Predictive Control (MPC) is highly dependent on the mechanisms used to coordinate the decisions made by controllers at different levels of the hierarchy. Conventionally, reference tracking serves as the primary coordination mechanism, where optimal state and input trajectories determined by upper-level controllers are communicated down the hierarchy to be tracked by lower-level controllers. As such, significant tuning is required for each controller in the hierarchy to achieve the desired closed-loop system performance. This paper presents a novel terminal cost coordination mechanism using constrained zonotopes, designed to improve system performance under hierarchical control. These terminal costs allow lower-level controllers to balance both short- and long-term control performance without the need for controller tuning. Unlike terminal costs widely used to guarantee MPC stability, the proposed terminal costs are time-varying and computed on-line based on the optimal state trajectory of the upper-level controllers. A numerical example demonstrates the provable performance benefits achieved using the proposed terminal cost coordination mechanism.  more » « less
Award ID(s):
1849500
PAR ID:
10250493
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
4126 - 4133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hybrid-electric aircraft represent an important step in the transition from conventional fuel-based propulsion to fully-electric aircraft. For hybrid power systems, overall aircraft performance and efficiency highly depend on the coordination of the fuel and electrical systems and the ability to effectively control state and input trajectories at the limits of safe operation. In such a safety-critical application, the chosen control strategy must ensure the closed-loop system adheres to these operational limits. While hierarchical Model Predictive Control (MPC) has proven to be a computationally efficient approach to coordinated control of complex systems across multiple timescales, most formulations are not supported by theoretical guarantees of actuator and state constraint satisfaction. To provide guaranteed constraint satisfaction, this paper presents set-based hierarchical MPC of a 16 state hybrid-electric aircraft power system. Within the proposed two-level vertical hierarchy, the long-term control decisions of the upper-level controller and the short-term control decisions of the lower-level controller are coordinated through the use of waysets. Simulation results show the benefits of this coordination in the context of hybrid-electric aircraft performance and demonstrate the practicality of applying set-based hierarchical MPC to complex multi-timescale systems. 
    more » « less
  2. null (Ed.)
    In modern high-performance aircraft, the Fuel Thermal Management System (FTMS) plays a critical role in the overall thermal energy management of the aircraft. Actuator and state constraints in the FTMS limit the thermal endurance and capabilities of the aircraft. Thus, an effective control strategy must plan and execute optimized transient fuel mass and temperature trajectories subject to these constraints over the entire course of operation. For the control of linear systems, hierarchical Model Predictive Control (MPC) has shown to be an effective approach to coordinating both short- and long-term system operation with reduced computational complexity. However, for controlling nonlinear systems, common approaches to system linearization may no longer be effective due to the long prediction horizons of upper-level controllers. This paper explores the limitations of using linear models for hierarchical MPC of the nonlinear FTMS found in aircraft. Numerical simulation results show that linearized models work well for lower-level controllers with short prediction horizons but lead to significant reductions in aircraft thermal endurance when used for upper-level controllers with long prediction horizons. Therefore, a mixed-linearity hierarchical MPC formulation is presented with a nonlinear upper-level controller and a linear lower-level controller to achieve both high performance and high computational efficiency. 
    more » « less
  3. We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%. 
    more » « less
  4. null (Ed.)
    Abstract This paper presents a novel architecture for model predictive control (MPC)-based indoor climate control of multi-zone buildings to provide energy efficiency. Unlike prior works, we do not assume the availability of a high-resolution multi-zone building model, which is challenging to obtain. Instead, the architecture uses a low-resolution model of the building that is divided into a small number of “meta-zones” that can be easily identified using existing data-driven modeling techniques. The proposed architecture is hierarchical. At the higher level, an MPC controller uses the low-resolution model to make decisions for the air handling unit (AHU) and the meta-zones. Since the meta-zones are fictitious, a lower level controller converts the high-level MPC decisions into commands for the individual zones by solving a projection problem that strikes a trade-off between two potentially conflicting goals: the AHU-level decisions made by the MPC are respected while the climate of the individual zones is maintained within the comfort bounds. The performance of the proposed controller is assessed via simulations in a high-fidelity simulation testbed and compared to that of a rule-based controller that is used in practice. Simulations in multiple weather conditions show the effectiveness of the proposed controller in terms of energy savings, climate control, and computational tractability. 
    more » « less
  5. Current commercial adaptive cruise control (ACC) systems consist of an upper-level planner controller that decides the optimal trajectory that should be followed, and a low-level controller in charge of sending the gas/break signals to the mechanical system to actually move the vehicle. We find that the low-level controller has a significant impact on the string stability (SS) even if the planner is string stable: (i) a slow controller deteriorates the SS, (ii) slow controllers are common as they arise from insufficient control gains, from a ”weak” gas/brake system or both, and (iii) the integral term in a slow controller causes undesired overshooting which affects the SS. Accordingly, we suggest tuning up the proportional/feedforward gain and ensuring the gas/brake is not ”weak”. The study results are validated both numerically and empirically with data from commercial cars. 
    more » « less