Real-time altitude control of airborne wind energy (AWE) systems can improve performance by allowing turbines to track favorable wind speeds across a range of operating altitudes. The current work explores the performance implications of deploying an AWE system with sensor configurations that provide different amounts of data to characterize wind speed profiles. We examine various control objectives that balance trade-offs between exploration and exploitation, and use a persistence model to generate a probabilistic wind speed forecast to inform control decisions. We assess system performance by comparing power production against baselines such as omniscient control and stationary flight. We show that with few sensors, control strategies that reward exploration are favored. We also show that with comprehensive sensing, the implications of choosing a sub-optimal control strategy decrease. This work informs and motivates the need for future research exploring online learning algorithms to characterize vertical wind speed profiles.
more »
« less
Empirical Regret Bounds for Control in Spatiotemporally Varying Environments: A Case Study in Airborne Wind Energy
This paper focuses on the empirical derivation of regret bounds for mobile systems that can vary their locations within a spatiotemporally varying environment in order to maximize performance. In particular, the paper focuses on an airborne wind energy system, where the replacement of towers with tethers and a lifting body allows the system to adjust its altitude continuously, with the goal of operating at the altitude that maximizes net power production. While prior publications have proposed control strategies for this problem, often with favorable results based on simulations that use real wind data, they lack any theoretical or statistical performance guarantees. In the present work, we make use of a very large synthetic data set, identified through parameters from real wind data, to derive probabilistic bounds on the difference between optimal and actual performance, termed regret. The results are presented for a variety of control strategies, including a maximum probability of improvement, upper confidence bound, greedy, and constant altitude approaches.
more »
« less
- Award ID(s):
- 1709767
- PAR ID:
- 10250576
- Date Published:
- Journal Name:
- ASME Dynamic Systems and Control Conference
- Page Range / eLocation ID:
- V002T22A002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper focuses on the system identification of an important class of nonlinear systems: nonlinear systems that are linearly parameterized, which enjoy wide applications in robotics and other mechanical systems. We consider two system identification methods: least-squares estimation (LSE), which is a point estimation method; and set-membership estimation (SME), which estimates an uncertainty set that contains the true parameters. We provide non-asymptotic convergence rates for LSE and SME under i.i.d. control inputs and control policies with i.i.d. random perturbations, both of which are considered as non-active-exploration inputs. Compared with the counter-example based on piecewise-affine systems in the literature, the success of non-active exploration in our setting relies on a key assumption about the system dynamics: we require the system functions to be real-analytic. Our results, together with the piecewise-affine counter-example, reveal the importance of differentiability in nonlinear system identification through non-active exploration. Lastly, we numerically compare our theoretical bounds with the empirical performance of LSE and SME on a pendulum example and a quadrotor example.more » « less
-
Due to mainstream adoption of cloud computing and its rapidly increasing usage of energy, the efficient management of cloud computing resources has become an important issue. A key challenge in managing the resources lies in the volatility of their demand. While there have been a wide variety of online algorithms (e.g. Receding Horizon Control, Online Balanced Descent) designed, it is hard for cloud operators to pick the right algorithm. In particular, these algorithms vary greatly on their usage of predictions and performance guarantees. This paper aims at studying an automatic algorithm selection scheme in real time. To do this, we empirically study the prediction errors from real-world cloud computing traces. Results show that prediction errors are distinct from different prediction algorithms, across virtual machines, and over the time horizon. Based on these observations, we propose a simple prediction error model and prove upper bounds on the dynamic regret of several online algorithms. We then apply the empirical and theoretical results to create a simple online meta-algorithm that chooses the best algorithm on the fly. Numerical simulations demonstrate that the performance of the designed policy is close to that of the best algorithm in hindsight.more » « less
-
Optimal control theory extending from the calculus of variations has not been used to study the wind turbine power system (WTPS) control problem, which aims at achieving two targets: (i) maximizing power generation in lower wind speed conditions; and (ii) maintaining the output power at the rated level in high wind speed conditions. A lack of an optimal control framework for the WTPS (i.e., no access to actual optimal control trajectories) reduces optimal control design potential and prevents competing control methods of WTPSs to have a reference control solution for comparison. In fact, the WTPS control literature often relies on reduced and linearized models of WTPSs, and avoids the nonsmoothness present in the system during transitions between different conditions of operation. In this paper, we introduce a novel optimal control framework for the WTPS control problem. We use in our formulation a recent accurate, nonlinear differential–algebraic equation (DAE) model of WTPSs, which we then generalize over all wind speed ranges using nonsmooth functions. We also use developments in nonsmooth optimal control theory to take into account nonsmoothness present in the system. We implement this new WTPS optimal control approach to solve the problem numerically, including (i) different wind speed profiles for testing the system response; (ii) real-world wind data; and (iii) a comparison with smoothing and naive approaches. Results show the effectiveness of the proposed approach.more » « less
-
null (Ed.)This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0.more » « less
An official website of the United States government

