skip to main content


Title: A Dual-Mode Microwave Resonator for Liquid Chromatography Applications
This work presents a microwave microfluidic sensor for high performance liquid chromatography (HPLC) applications. The sensor is based on a modified square ring loaded resonator (SRLR), where a transmission line and a ring are electrically shorted with a center gap. A microfluidic channel is bonded above the gap for liquid-under-test (LUT) measurement. When the dielectric constant of LUT is above a threshold value, two degeneration modes of the resonator are separated, resulting in two transmission-zero frequencies. The threshold dielectric constant can be easily tuned by the gap size. High sensitivity is achieved when LUT dielectric constant is close to the threshold value. These features enable the proposed resonator to be optimized for different microfluidic applications. To validate the design, three resonators with 10 µm, 30 µm and 90 µm gap sizes are built and tested with water-methanol solutions in various volume fractions. Additionally, the sensor is connected in series with HPLC system for caffeine and sucrose detection. The detection linearity is characterized by measuring water-caffeine samples from 0.77 ppm to 1000 ppm. A 0.231 ppm limit of detection (LOD) is achieved, revealing a comparable sensitivity with commercial ultraviolet (UV) detectors. The compatibility of the proposed sensor to gradient elution is also demonstrated.  more » « less
Award ID(s):
1711463
NSF-PAR ID:
10250836
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE sensors journal
Volume:
21
Issue:
2
ISSN:
1558-1748
Page Range / eLocation ID:
1222-1228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Detection of illicit drug residues from wastewater provides a new route toward community-level assessment of drug abuse that is critical to public health. However, traditional chemistry analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved quantitative analysis through principal component analysis and partial least-squares regression. The SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based on training data from artificially contaminated tap water, we predicted the fentanyl concentration in the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison, the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific value of the concentration since the concentration was too low. In addition, we further proved the validity of our SERS sensing technique by comparing SERS results from multiple sewage water treatment plants, and the results are consistent with the public health data from our local health authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess public health. 
    more » « less
  2. Abstract

    Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50–200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMSfor both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing—known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware — ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology.

     
    more » « less
  3. null (Ed.)
    Lab-on-a-chip technology offers an ideal platform for low-cost, reliable, and easy-to-use diagnostics of key biomarkers needed for early screening of diseases and other health concerns. In this work, a graphene field-effect transistor (GFET) functionalized with target-binding aptamers is used as a biosensor for the detection of thrombin protein biomarker. Furthermore, this GFET is integrated with a microfluidic device for enhanced sensing performances in terms of detection limit, sensitivity, and continuous monitoring. Under this platform, a picomolar limit of detection was achieved for measuring thrombin; in our experiment measured as low as 2.6 pM. FTIR, Raman and UV-Vis spectroscopy measurements were performed to confirm the device functionalization steps. Based on the concentration-dependent calibration curve, a dissociation constant of K D = 375.8 pM was obtained. Continuous real-time measurements were also conducted under a constant gate voltage ( V GS ) to observe the transient response of the sensor when analyte was introduced to the device. The target selectivity of the sensor platform was evaluated and confirmed by challenging the GFET biosensor with various concentrations of lysozyme protein. The results suggest that this device technology has the potential to be used as a general diagnostic platform for measuring clinically relevant biomarkers for point-of-care applications. 
    more » « less
  4. Abstract

    We present a computational study of Purcell factor enhancement for a novel hybrid-plasmonic ring resonator using a novel implementation of the body-of-revolution (BOR) finite-difference time-domain (FDTD) method. In this hybrid structure, a dielectric slot ring is surrounded by a metallic ring such that a hybrid plasmonic mode is generated within two thin low-index gaps. The surrounding metallic ring decreases the binding loss for small ring radii, leading to high-quality factors and mode-field confinement. The hybrid resonator shows high quality-factor values above 103and small mode volumes down to103λn3simultaneously, thus providing large Purcell factors (Fp> 104). The distributed strong confinement within two gaps renders the proposed resonator useful for multi-emitter applications.

     
    more » « less
  5. In the context of continued spread of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and the emergence of new variants, the demand for rapid, accurate, and frequent detection is increasing. Moreover, the new predominant strain, Omicron variant, manifests more similar clinical features to those of other common respiratory infections. The concurrent detection of multiple potential pathogens helps distinguish SARS-CoV-2 infection from other diseases with overlapping symptoms, which is significant for providing tailored treatment to patients and containing the outbreak. Here, we report a lab-on-a-chip biosensing platform for SARS-CoV-2 detection based on the subwavelength grating micro-ring resonator. The sensing surface is functionalized by specific antibody against SARS-CoV-2 spike protein, which could produce redshifts of resonant peaks by antigen–antibody combination, thus achieving quantitative detection. Additionally, the sensor chip is integrated with a microfluidic chip featuring an anti-backflow Y-shaped structure that enables the concurrent detection of two analytes. In this study, we realized the detection and differentiation of COVID-19 and influenza A H1N1. Experimental results indicate that the limit of detection of our device reaches 100 fg/ml (1.31 fM) within 15 min detecting time, and cross-reactivity tests manifest the specificity of the optical diagnostic assay. Furthermore, the integrated packaging and streamlined workflow facilitate its use for clinical applications. Thus, the biosensing platform presents a promising approach for attaining highly sensitive, selective, multiplexed, and quantitative point-of-care diagnosis and distinction between COVID-19 and influenza.

     
    more » « less