skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimally invasive brain injections for viral-mediated transgenesis: New tools for behavioral genetics in sticklebacks
Behavioral genetics in non-model organisms is currently gated by technological limitations. However, with the growing availability of genome editing and functional genomic tools, complex behavioral traits such as social behavior can now be explored in diverse organisms. Here we present a minimally invasive neurosurgical procedure for a classic behavioral, ecological and evolutionary system: threespine stickleback ( Gasterosteus aculeatus ). Direct brain injection enables viral-mediated transgenesis and pharmaceutical delivery which bypasses the blood-brain barrier. This method is flexible, fast, and amenable to statistically powerful within-subject experimental designs, making it well-suited for use in genetically diverse animals such as those collected from natural populations. Developing this minimally invasive neurosurgical protocol required 1) refining the anesthesia process, 2) building a custom surgical rig, and 3) determining the normal recovery pattern allowing us to clearly identify warning signs of failure to thrive. Our custom-built surgical rig (publicly available) and optimized anesthetization methods resulted in high (90%) survival rates and quick behavioral recovery. Using this method, we detected changes in aggression from the overexpression of either of two different genes, arginine vasopressin ( AVP ) and monoamine oxidase ( MAOA ), in outbred animals in less than one month. We successfully used multiple promoters to drive expression, allowing for tailored expression profiles through time. In addition, we demonstrate that widely available mammalian plasmids work with this method, lowering the barrier of entry to the technique. By using repeated measures of behavior on the same fish before and after transfection, we were able to drastically reduce the necessary sample size needed to detect significant changes in behavior, making this a viable approach for examining genetic mechanisms underlying complex social behaviors.  more » « less
Award ID(s):
1915134
PAR ID:
10251016
Author(s) / Creator(s):
;
Editor(s):
Fugmann, Sebastian D.
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0251653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Brain Stimulation (DBS) surgeries are not new, although they were only granted approval in the U.S. by the U.S. Food and Drug Administration (FDA) in 2002 for advanced Parkinson’s Disease (PD). In 2016, DBS surgery was approved for earlier stages of PD. This does not mean that DBS surgery, generally considered minimally invasive, does not come without commensurate risks. The Mayo Clinic identifies DBS as a serious and potential risky procedure, whereby those eligible must carefully weigh pros and cons. The aim of this paper is to provide a general overview of deep brain stimulation surgery and to present the findings of available informational resources on 14 hospital and medical center web sites that were reviewed, pertaining to surgical procedures and policies: pre-operative to post-operative. The article focuses on critiquing available educational DBS materials and their adequacy in addressing potential risks of DBS surgery. The findings indicate that hospital informational resources on the DBS surgical technique reaffirm each other’s educational materials and that they positively inform patient decision-making. These factors can be linked to better post-operative recovery. However, the materials provided by the hospitals overemphasize the positive aspects of DBS with relatively little detail about potential side effects. This article also outlines the potential short-term and long-term side effects of DBS surgery as identified by the DBS educational literature found on the hospital web sites reviewed. 
    more » « less
  2. Abstract For decades, bioadhesive materials have garnered great attention due to their potential to replace sutures and staples for sealing tissues during minimally invasive surgical procedures. However, the complexities of delivering bioadhesives through narrow spaces and achieving strong adhesion in fluid‐rich physiological environments continue to present substantial limitations to the surgical translation of existing sealants. In this work, a new strategy for minimally invasive tissue sealing based on a multilayer bioadhesive patch, which is designed to repel body fluids, to form fast, pressure‐triggered adhesion with wet tissues, and to resist biofouling and inflammation is introduced. The multifunctional patch is realized by a synergistic combination of three distinct functional layers: i) a microtextured bioadhesive layer, ii) a dynamic, blood‐repellent hydrophobic fluid layer, and iii) an antifouling zwitterionic nonadhesive layer. The patch is capable of forming robust adhesion to tissue surfaces in the presence of blood, and exhibits superior resistance to bacterial adhesion, fibrinogen adsorption, and in vivo fibrous capsule formation. By adopting origami‐based fabrication strategies, it is demonstrated that the patch can be readily integrated with a variety of minimally invasive end effectors to provide facile tissue sealing in ex vivo porcine models, offering new opportunities for minimally invasive tissue sealing in diverse clinical scenarios. 
    more » « less
  3. This paper describes a framework allowing intraoperative photoacoustic (PA) imaging integrated into minimally invasive surgical systems. PA is an emerging imaging modality that combines the high penetration of ultrasound (US) imaging with high optical contrast. With PA imaging, a surgical robot can provide intraoperative neurovascular guidance to the operating physician, alerting them of the presence of vital substrate anatomy invisible to the naked eye, preventing complications such as hemorrhage and paralysis. Our proposed framework is designed to work with the da Vinci surgical system: real-time PA images produced by the framework are superimposed on the endoscopic video feed with an augmented reality overlay, thus enabling intuitive three-dimensional localization of critical anatomy. To evaluate the accuracy of the proposed framework, we first conducted experimental studies in a phantom with known geometry, which revealed a volumetric reconstruction error of 1.20 ± 0.71 mm. We also conducted anex vivostudy by embedding blood-filled tubes into chicken breast, demonstrating the successful real-time PA-augmented vessel visualization onto the endoscopic view. These results suggest that the proposed framework could provide anatomical and functional feedback to surgeons and it has the potential to be incorporated into robot-assisted minimally invasive surgical procedures. 
    more » « less
  4. Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social-status-dependent differences in behavior must arise due to neural plasticity, mechanisms of how neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PT), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity, and functional activity of the PT in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared to subordinates, while PT synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates compared to dominants. Secondly, these socially induced morphological differences emerge after one week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared to subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlates with adaptations in startle escape and swim behaviors. Our results provide new insights of the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization. 
    more » « less
  5. Ultra-miniaturized microendoscopes are vital for numerous biomedical applications. Such minimally invasive imagers allow for navigation into hard-to-reach regions and observation of deep brain activity in freely moving animals. Conventional solutions use distal microlenses. However, as lenses become smaller and less invasive, they develop greater aberrations and restricted fields of view. In addition, most of the imagers capable of variable focusing require mechanical actuation of the lens, increasing the distal complexity and weight. Here, we demonstrate a distal lens-free approach to microendoscopy enabled by computational image recovery. Our approach is entirely actuation free and uses a single pseudorandom spatial mask at the distal end of a multicore fiber. Experimentally, this lensless approach increases the space-bandwidth product, i.e., field of view divided by resolution, by threefold over a best-case lens- based system. In addition, the microendoscope demonstrates color resolved imaging and refocusing to 11 distinct depth planes from a single camera frame without any actuated parts. 
    more » « less