skip to main content


Title: The landscape of disc outflows from black hole–neutron star mergers
ABSTRACT We investigate mass ejection from accretion discs formed in mergers of black holes (BHs) and neutron stars (NSs). The third observing run of the LIGO/Virgo interferometers provided BH–NS candidate events that yielded no electromagnetic (EM) counterparts. The broad range of disc configurations expected from BH–NS mergers motivates a thorough exploration of parameter space to improve EM signal predictions. Here we conduct 27 high-resolution, axisymmetric, long-term hydrodynamic simulations of the viscous evolution of BH accretion discs that include neutrino emission/absorption effects and post-processing with a nuclear reaction network. In the absence of magnetic fields, these simulations provide a lower limit to the fraction of the initial disc mass ejected. We find a nearly linear inverse dependence of this fraction on disc compactness (BH mass over initial disc radius). The dependence is related to the fraction of the disc mass accreted before the ouflow is launched, which depends on the disc position relative to the innermost stable circular orbit. We also characterize a trend of decreasing ejected fraction and decreasing lanthanide/actinide content with increasing disc mass at fixed BH mass. This trend results from a longer time to reach weak freezout and an increasingly dominant role of neutrino absorption at higher disc masses. We estimate the radioactive luminosity from the disc outflow alone available to power kilonovae over the range of configurations studied, finding a spread of two orders of magnitude. For most of the BH–NS parameter space, the disc outflow contribution is well below the kilonova mass upper limits for GW190814.  more » « less
Award ID(s):
2020275 1806278
NSF-PAR ID:
10251375
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3221 to 3233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is ${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them. 
    more » « less
  2. ABSTRACT

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs offer a distinct dynamical channel to produce black hole mergers detected in gravitational waves by LIGO/Virgo. To understand their orbital evolution through interactions with the disc gas, we perform a suite of two-dimensional high-resolution, local shearing box, viscous hydrodynamical simulations of equal-mass binaries. We find that viscosity not only smooths the flow structure around prograde circular binaries,but also greatly raises their accretion rates. The torque associated with accretion may be overwhelmingly positive and dominate over the gravitational torque at a high accretion rate. However, the accreted angular momentum per unit mass decreases with increasing viscosity, making it easier to shrink the binary orbit. In addition, retrograde binaries still experience rapid orbital decay, and prograde eccentric binaries still experience eccentricity damping. Our numerical experiments further show that prograde binaries are more likely to be hardened if the physical sizes of the accretors are sufficiently small such that the accretion rate is reduced. The dependence of the binary accretion rate on the accretor size can be weaken through boosted accretion either due to a high viscosity or a more isothermal-like equation of state. Our results widen the explored parameter space for the hydrodynamics of embedded BBHs and demonstrate that their orbital evolution in AGN discs is a complex, multifaceted problem.

     
    more » « less
  3. ABSTRACT

    The merging of a binary system involving two neutron stars (NSs), or a black hole (BH) and an NS, often results in the emission of an electromagnetic (EM) transient. One component of this EM transient is the epic explosion known as a kilonova (KN). The characteristics of the KN emission can be used to probe the equation of state (EoS) of NS matter responsible for its formation. We predict KN light curves from computationally simulated BH–NS mergers, by using the 3D radiative transfer code possis. We investigate two EoSs spanning most of the allowed range of the mass–radius diagram. We also consider a soft EoS compatible with the observational data within the so-called 2-families scenario in which hadronic stars co-exist with strange stars. Computed results show that the 2-families scenario, characterized by a soft EoS, should not produce a KN unless the mass of the binary components are small (MBH ≤ 6 M⊙ and MNS ≤ 1.4 M⊙) and the BH is rapidly spinning (χBH ≥ 0.3). In contrast, a strong KN signal potentially observable from future surveys (e.g. the Vera Rubin Observatory) is produced in the 1-family scenario for a wider region of the parameter space, and even for non-rotating BHs (χBH = 0) when MBH = 4 M⊙ and MNS = 1.2 M⊙. We also provide a fit that allows for the calculation of the unbound mass from the observed KN magnitude, without running timely and costly radiative transfer simulations. Findings presented in this paper will be used to interpret light curves anticipated during the fourth observing run (O4), of the advanced LIGO, advanced Virgo, and KAGRA interferometers and thus to constrain the EoS of NS matter.

     
    more » « less
  4. null (Ed.)
    Abstract Among the potential milliHz gravitational wave (GW) sources for the upcoming space-based interferometer LISA are extreme- or intermediate-mass ratio inspirals (EMRI/IMRIs). These events involve the coalescence of supermassive black holes in the mass range 105M⊙ ≲ M ≲ 107M⊙ with companion BHs of much lower masses. A subset of E/IMRIs are expected to occur in the accretion discs of active galactic nuclei (AGN), where torques exerted by the disc can interfere with the inspiral and cause a phase shift in the GW waveform. Here we use a suite of two-dimensional hydrodynamical simulations with the moving-mesh code DISCO to present a systematic study of disc torques. We measure torques on an inspiraling BH and compute the corresponding waveform deviations as a function of the binary mass ratio q ≡ M2/M1, the disc viscosity (α), and gas temperature (or equivalently Mach number; $\mathcal {M}$). We find that the absolute value of the gas torques is within an order of magnitude of previously determined planetary migration torques, but their precise value and sign depends non-trivially on the combination of these parameters. The gas imprint is detectable by LISA for binaries embedded in AGN discs with surface densities above $\Sigma _0\ge 10^{4-6} \rm \, g cm^{-2}$, depending on q, α and $\mathcal {M}$. Deviations are most pronounced in discs with higher viscosities, and for E/IMRIs detected at frequencies where LISA is most sensitive. Torques in colder discs exhibit a noticeable dependence on the GW-driven inspiral rate as well as strong fluctuations at late stages of the inspiral. Our results further suggest that LISA may be able to place constraints on AGN disc parameters and the physics of disc-satellite interaction. 
    more » « less
  5. ABSTRACT We study the optical light curves – primarily probing the variable emission from the accretion disc – of ∼900 extreme variability quasars (EVQs, with maximum flux variations more than 1 mag) over an observed-frame baseline of ∼16 yr using public data from the SDSS Stripe 82, PanSTARRS-1 and the Dark Energy Survey. We classify the multiyear long-term light curves of EVQs into three categories roughly in the order of decreasing smoothness: monotonic decreasing or increasing (3.7 per cent), single broad peak and dip (56.8 per cent), and more complex patterns (39.5 per cent). The rareness of monotonic cases suggests that the major mechanisms driving the extreme optical variability do not operate over time-scales much longer than a few years. Simulated light curves with a damped random walk model generally under-predict the first two categories with smoother long-term trends. Despite the different long-term behaviours of these EVQs, there is little dependence of the long-term trend on the physical properties of quasars, such as their luminosity, BH mass, and Eddington ratio. The large dynamic range of optical flux variability over multiyear time-scales of these EVQs allows us to explore the ensemble correlation between the short-term (≲6 months) variability and the seasonal-average flux across the decade-long baseline (the rms-mean flux relation). We find that unlike the results for X-ray variability studies, the linear short-term flux variations do not scale with the seasonal-average flux, indicating different mechanisms that drive the short-term flickering and long-term extreme variability of accretion disc emission. Finally, we present a sample of 16 EVQs, where the approximately bell-shaped large amplitude variation in the light curve can be reasonably well fit by a simple microlensing model. 
    more » « less