skip to main content


Title: Open-shell donor–π–acceptor conjugated metal-free dyes for dye-sensitized solar cells
Dye-sensitized solar cells (DSCs) have drawn a significant interest due to their low production cost, design flexibility, and the tunability of the sensitizer. However, the power conversion efficiency (PCE) of the metal-free organic dyes is limited due to the inability of the dye to absorb light in the near-infrared (NIR) region, leaving a large amount of energy unused. Herein, we have designed new DSC dyes with open-shell character, which significantly red-shifts the absorption spectra from their counterpart closed-shell structure. A small diradical character ( y < 0.10) is found to be beneficial in red-shifting the absorption maxima into the NIR region and broadening up to 2500 nm. Also, the open-shell dyes significantly reduce the singlet–triplet energy gaps (Δ E ST ), increase the total amount of charge-transfer to the semiconductor surface, reduce the exciton binding energy, and significantly increase the excited-state lifetimes compared to the closed-shell systems. However, the closed-shell dyes have higher injection efficiency with increased intramolecular charge transfer (ICT) character. Our study reveals the design rule for open-shell DSC dyes to be able to absorb photons in the NIR region, which can increase the efficiency of the solar cell device.  more » « less
Award ID(s):
1757220
NSF-PAR ID:
10251837
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
9
ISSN:
2058-9689
Page Range / eLocation ID:
1477 to 1490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications. 
    more » « less
  2. Many emerging light-harvesting systems for solar-energy capture depend on absorption of light by molecular dyes and subsequent electron transfer to metal-oxide semiconductors. However, the inhomoge- neous electron-transfer process is often misunderstood when analogies from bimolecular electron transfer are used to explain experimental trends. Here, we develop and apply a theoretical methodology that correctly incorporates the semiconductor density of states and the system reorganization energies to explain observed trends in a series of molecular sensitizers. The effects of chalcogen and bridge substitution on the electron transfer in rhodamine− TiO2 complexes are theoretically investigated by combining density functional theory (DFT)/time-dependent DFT calculations and Fermi’s golden rule for the rate constant. It is shown that all dyes exhibit τeT < 4 ps. Dyes with thiophene bridges exhibit shorter τeT (∼1 ps) than dyes with phenylene bridges (∼4 ps). When the planes of the dye core and bridge are fixed at coplanarity, the dye−TiO2 coupling strength is found to increase by a factor of ∼2 when compared with the Franck− Condon geometry. However, the donor energy level of coplanar dyes falls significantly below the TiO2 conduction band edge so that, despite enhanced coupling, electron transfer is slowed to ∼20 ps. Similar results appear for the excited triplet states of these dyes, showing that the intersystem crossing to low energy triplet states can increase electron-transfer time constants to 60−240 ps. These results are compared to the results of previous photocatalytic hydrogen generation and dye-sensitized solar cell experiments. 
    more » « less
  3. In recent years, organic dye molecules as photosensitizers have played a significant role in the field of dye-sensitized solar cells. In this context, two primary dihydroindolocarbazole-based organic dyes (sk201 and sk202), which were synthesized recently by Song et al., and three further designed dyes (DMZ1-3) were theoretically investigated based on density functional theory and time-dependent density functional theory. Molecular geometries, absorption spectra, charge transfer, molecular electrostatic potential and nonlinear optical properties were quantificationally studied and visually presented to reveal the relationships between the molecular structures and performances of dyes. The effects of joining the isolated dyes and TiO2 on the molecular absorption spectra and energy levels were analyzed. Moreover, several parameters, such as efficiency of light-harvesting, driving forces of electron regeneration and injection, excited-state lifetime and vertical dipole moment, were calculated to give the multi-angle demonstrations of the photovoltaic performances for these dyes. 
    more » « less
  4. Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2–3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites. 
    more » « less
  5. Abstract

    A hexaradicaloid molecule with alternating Kekulé and non‐Kekulé connectivities between adjacent spin centers was obtained by fusing two conjugation motifs in Chichibabin and Schlenk hydrocarbons into a coronoid structure.1H NMR, ESR, and SQUID experiments and computational analyses show that the system has a singlet ground state with a significant hexaradicaloid character (γ0=0.826,γ1=γ2=0.773). It has multiple thermally accessible high‐spin states (up to the septet), with uniform energy gaps of ca 1.0 kcal mol−1between consecutive multiplicities. In line with its open‐shell character, the coronoid has a small electronic band gap (ca. 0.8 eV) and undergoes two consecutive one‐electron oxidations at low potentials, yielding cationic forms with extended near‐infrared absorption. The hexaradicaloid, which combines open‐shell and macrocyclic contributions to its π conjugation, is an example of a design strategy for multistate spin switches and redox‐amphoteric NIR dyes.

     
    more » « less