Reducing the cost of hydrogen transport is an important priority for the proliferation of clean hydrogen to decarbonize the economy. It is possible to alleviate the hydrogen transportation costs by delivering them via existing natural gas pipeline infrastructure. This strategy, however, necessitates the dilution of hydrogen by blending it with natural gas as hydrogen embrittlement pipeline materials. In this work, we deploy high-temperature polymer electrolyte membrane electrochemical hydrogen pumps (HT-PEM EHPs) to purify hydrogen from dilute hydrogen–natural gas mixtures (5 to 20 vol % hydrogen). Interestingly, we observe that activation overpotentials govern HT-PEM EHP polarization when feeding dilute hydrogen mixtures. Pressurizing the anode to 1.76 barabs enables us to ameliorate interfacial mass transfer resistance and achieve an EHP limiting current density of 1.4 A cm–2 with a 10 vol % of hydrogen in a natural gas feed. The HT-PEM EHP showed a small degradation rate, 44 μV h–1, during a 100 h durability test.
more »
« less
SN 2013ai: A Link between Hydrogen-rich and Hydrogen-poor Core-collapse Supernovae
More Like this
-
-
null (Ed.)For over eighty years, scientists have been trying to produce lab-made metallic hydrogen, the holy grail of alternative fuels. In that process, diamond anvils must withstand pressures greater than those at the center of the earth—no mean feat. Recent research may have finally achieved hydrogen’s metallic state. All that remains is for another lab to reproduce the results.more » « less
-
We used the method of electron spin resonance (ESR) to investigate the temperature-dependent recombination rate of H atoms in solid molecular hydrogen deuteride (HD). A 1.5 휇m thick solid molecular HD film was deposited at a rate of 2 monolayer/s, onto a gold surface maintained at T=1.5 K. H and D atoms were accumulated in the film by maintaining radio-frequency electric discharge above the film for 19 days. After further storage of the sample for 48 h, at T < 1 K, the D atom signal vanished. The concentration of H atoms was monitored as the sample was warmed stepwise from 1.1 K to 2.8 K. The recombination rate of H atoms in solid HD was found to be proportional to temperature in this range.more » « less