skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environment Shapes the Microbiome of the Blue Orchard Bee, Osmia lignaria: RRH: Environmental Drivers of Bee Microbiome
Award ID(s):
1929572 1929499
PAR ID:
10252689
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Microbial Ecology
Volume:
80
Issue:
4
ISSN:
0095-3628
Page Range / eLocation ID:
897 to 907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cavanaugh, Colleen M. (Ed.)
    ABSTRACT Diet and gut microbiomes are intricately linked on both short and long timescales. Changes in diet can alter the microbiome, while microbes in turn allow hosts to access novel diets. Bees are wasps that switched to a vegetarian lifestyle, and the vast majority of bees feed on pollen and nectar. Some stingless bee species, however, also collect carrion, and a few have fully reverted to a necrophagous lifestyle, relying on carrion for protein and forgoing flower visitation altogether. These “vulture” bees belong to the corbiculate apid clade, which is known for its ancient association with a small group of core microbiome phylotypes. Here, we investigate the vulture bee microbiome, along with closely related facultatively necrophagous and obligately pollinivorous species, to understand how these diets interact with microbiome structure. Via deep sequencing of the 16S rRNA gene and subsequent community analyses, we find that vulture bees have lost some core microbes, retained others, and entered into novel associations with acidophilic microbes found in the environment and on carrion. The abundance of acidophilic bacteria suggests that an acidic gut is important for vulture bee nutrition and health, as has been found in other carrion-feeding animals. Facultatively necrophagous bees have more variable microbiomes than strictly pollinivorous bees, suggesting that bee diet may interact with microbiomes on both short and long timescales. Further study of vulture bees promises to provide rich insights into the role of the microbiome in extreme diet switches. IMPORTANCE When asked where to find bees, people often picture fields of wildflowers. While true for almost all species, there is a group of specialized bees, also known as the vulture bees, that instead can be found slicing chunks of meat from carcasses in tropical rainforests. In this study, researchers compared the microbiomes of closely related bees that live in the same region but vary in their dietary lifestyles: some exclusively consume pollen and nectar, others exclusively depend on carrion for their protein, and some consume all of the above. Researchers found that vulture bees lost some ancestral “core” microbes, retained others, and entered into novel associations with acidophilic microbes, which have similarly been found in other carrion-feeding animals such as vultures, these bees’ namesake. This research expands our understanding of how diet interacts with microbiomes on both short and long timescales in one of the world’s biodiversity hot spots. 
    more » « less
  2. Schloss, P. D. (Ed.)
    ABSTRACT The European honey bee ( Apis mellifera ) is used extensively to produce hive products and for crop pollination, but pervasive concerns about colony health and population decline have sparked an interest in the microbial communities that are associated with these important insects. Currently, only the microbiome of workers has been characterized, while little to nothing is known about the bacterial communities that are associated with queens, even though their health and proper function are central to colony productivity. Here, we provide a large-scale analysis of the gut microbiome of honey bee queens during their developmental trajectory and through the multiple colonies that host them as part of modern queen-rearing practices. We found that queen microbiomes underwent a dramatic shift in size and composition as they aged and encountered different worker populations and colony environments. Queen microbiomes were dominated by enteric bacteria in early life but were comprised primarily of alphaproteobacteria at maturity. Furthermore, queen gut microbiomes did not reflect those of the workers who tended them and, indeed, they lacked many of the bacteria that are considered vital to workers. While worker gut microbiotas were consistent across the unrelated colony populations sampled, the microbiotas of the related queens were highly variable. Bacterial communities in mature queen guts were similar in size to those of mature workers and were characterized by dominant and specific alphaproteobacterial strains known to be associated with worker hypopharyngeal glands. Our results suggest a model in which queen guts are colonized by bacteria from workers' glands, in contrast to routes of maternal inoculation for other animal microbiomes. 
    more » « less
  3. Campbell, Barbara J. (Ed.)
    ABSTRACT Host-associated microbiomes can be critical for the health and proper development of animals and plants. The answers to many fundamental questions regarding the modes of acquisition and microevolution of microbiome communities remain to be established. Deciphering strain-level dynamics is essential to fully understand how microbial communities evolve, but the forces shaping the strain-level dynamics of microbial communities remain largely unexplored, mostly because of methodological issues and cost. Here, we used targeted strain-level deep sequencing to uncover the strain dynamics within a host-associated microbial community using the honey bee gut microbiome as a model system. Our results revealed that amplicon sequencing of conserved protein-coding gene regions using species-specific primers is a cost-effective and accurate method for exploring strain-level diversity. In fact, using this method we were able to confirm strain-level results that have been obtained from whole-genome shotgun sequencing of the honey bee gut microbiome but with a much higher resolution. Importantly, our deep sequencing approach allowed us to explore the impact of low-frequency strains (i.e., cryptic strains) on microbiome dynamics. Results show that cryptic strain diversity is not responsible for the observed variations in microbiome composition across bees. Altogether, the findings revealed new fundamental insights regarding strain dynamics of host-associated microbiomes. IMPORTANCE The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees. 
    more » « less
  4. Klassen, Jonathan L. (Ed.)
    The queen caste plays a central role in colony success in eusocial insects, as queens lay eggs and regulate colony behavior and development. Queen failure can cause colonies to collapse, which is one of the major concerns of beekeepers. Thus, understanding the biology behind the queen’s health is a pressing issue. Previous studies have shown that the bee microbiome plays an important role in worker bee health, but little is known about the queen microbiome and its functionin vivo. Here, we characterized the queen microbiome, identifying for the first time the present species and their putative functions. We show that the queen microbiome has predicted nutritional and protective roles in queen association and comprises only four consistently present bacterial species. Additionally, we bring to attention the spread of phages in the queen microbiome, which increased in abundance in failing queens and may impact the fate of the colony. 
    more » « less