skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Central Moment Analysis for Cost Accumulators in Probabilistic Programs
For probabilistic programs, it is usually not possible to automatically derive exact information about their properties, such as the distribution of states at a given program point. Instead, one can attempt to derive approximations, such as upper bounds on tail probabilities. Such bounds can be obtained via concentration inequalities, which rely on the moments of a distribution, such as the expectation (the first raw moment) or the variance (the second central moment). Tail bounds obtained using central moments are often tighter than the ones obtained using raw moments, but automatically analyzing central moments is more challenging. This paper presents an analysis for probabilistic programs that automatically derives symbolic upper and lower bounds on variances, as well as higher central moments, of cost accumulators. To overcome the challenges of higher-moment analysis, it generalizes analyses for expectations with an algebraic abstraction that simultaneously analyzes different moments, utilizing relations between them. A key innovation is the notion of moment-polymorphic recursion, and a practical derivation system that handles recursive functions. The analysis has been implemented using a template-based technique that reduces the inference of polynomial bounds to linear programming. Experiments with our prototype central-moment analyzer show that, despite the analyzer’s upper/lower bounds on various quantities, it obtains tighter tail bounds than an existing system that uses only raw moments, such as expectations.  more » « less
Award ID(s):
1845514 1801369
PAR ID:
10253160
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PLDI '21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation
Page Range / eLocation ID:
559 to 573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    The softmax function is a ubiquitous component at the output of neural networks and increasingly in intermediate layers as well. This paper provides convex lower bounds and concave upper bounds on the softmax function, which are compatible with convex optimization formulations for characterizing neural networks and other ML models. We derive bounds using both a natural exponential-reciprocal decomposition of the softmax as well as an alternative decomposition in terms of the log-sum-exp function. The new bounds are provably and/or numerically tighter than linear bounds obtained in previous work on robustness verification of transformers. As illustrations of the utility of the bounds, we apply them to verification of transformers as well as of the robustness of predictive uncertainty estimates of deep ensembles. 
    more » « less
  2. We show how to achieve the notion of "multicalibration" from Hébert-Johnson et al. [2018] not just for means, but also for variances and other higher moments. Informally, it means that we can find regression functions which, given a data point, can make point predictions not just for the expectation of its label, but for higher moments of its label distribution as well-and those predictions match the true distribution quantities when averaged not just over the population as a whole, but also when averaged over an enormous number of finely defined subgroups. It yields a principled way to estimate the uncertainty of predictions on many different subgroups-and to diagnose potential sources of unfairness in the predictive power of features across subgroups. As an application, we show that our moment estimates can be used to derive marginal prediction intervals that are simultaneously valid as averaged over all of the (sufficiently large) subgroups for which moment multicalibration has been obtained. 
    more » « less
  3. null (Ed.)
    In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  4. In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First, we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next, we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  5. In the analysis of wireless networks, the standard signal-to-interference (SIR) distribution does not capture the performance at the individual link level. The meta distribution (MD) of the SIR resolves this problem by separating different sources of randomness, such as fading and point process(es). While it allows for a much sharper performance characterization, it can in most cases only be calculated based on the moments of the underlying conditional distribution, i.e., by solving a Hausdorff moment problem. Several methods to reconstruct MDs from the moments have been proposed but a rigorous analysis, comparison of their performance, and practical implementations are missing. In addition, a standard is needed for a consistent and objective comparison. This paper addresses the above-mentioned important shortcomings, introduces a tweaking mapping for adjusting approximations, presents terminology to categorize the quality of approximations, proposes the use of the Fourier- Legendre method, which has not previously been applied to MDs, and provides the achievable lower and upper bounds on the MD given the first 𝑛 moments. Further, to facilitate the use of MDs, we give comprehensive guidance on the selection of the best method to determine MDs, and we offer ready-to-use implementations of the proposed algorithms. This study fills an important gap in the literature by rigorously analyzing the MDs, comparing the performance of different methods, and offering user-friendly implementations for recovering MDs from moments. 
    more » « less